
DESIGN AND IMPLEMENTATION OF LINUX DRIVERS FOR NATIONAL
INSTRUMENTS IEEE 1588 TIMING AND GENERAL I/O CARDS

K.A. Meyer*, K. Vodopivec, Cosylab Ltd, Ljubljana, Slovenia
R. Sabjan, K. Zagar, COBIK, Solkan, Slovenia#

Abstract
Cosylab is developing GPL Linux device drivers to

support several National Instruments (NI) devices. In
particular, drivers have already been developed for the NI
PCI-1588, PXI-6682 (IEEE1588/PTP) devices and the NI
PXI-6259 I/O device. These drivers are being used in the
development of the latest plasma fusion research reactor,
ITER, being built at the Cadarache facility in France.

In this paper we discuss design and implementation
issues, such as driver API design (device file per device
versus device file per functional unit), PCI device
enumeration, handling reset, etc. We also present various
use-cases demonstrating the capabilities and real-world
applications of these drivers.

BACKGROUND
ITER, the next generation of magnetically confined

plasma fusion reactor, is being built at the Cadarache
facility in France. Designed to produce up to 10 times
more energy than it consumes, ITER succeeds the Joint
European Torus (JET), and precedes the future
commercial plasma fusion demonstrator (DEMO).

The National Instruments (NI) hardware selected by
ITER is versatile, of high manufacturing quality, provides
important features such as triggering signals on the
backplane and is also cost effective. However, since ITER
has also adopted Red Hat Enterprise Linux (RHEL) as the
operating system (OS) for their instrumentation and
control systems (I&C), they require Linux device drivers
for the NI hardware, which is ordinarily only provided
with drivers for Microsoft Windows or LabView
embedded devices. Cosylab has developed both the kernel
modules and the user-space libraries required by Linux
applications.

SUPPORTED HARDWARE
The two hardware types are:

· IEEE 1588 Precision Time Protocol (PTP)
· Multifunction input/output (I/O)
The supported NI PTP hardware modules are the PCI-

1588 and the PXI-6682, which provide advanced timing
capabilities and a few digital I/O channels. The supported
NI multifunction I/O module is the PXI-6259, which
provides multiple analogue and digital channels for both
input and output.

DRIVER DESIGN

Application Programming Interface (API)
In the initial design stages it was known that each

hardware module consisted of multiple functional units,
such as I/O channels or timing triggers. It was also known
that many of these units could be independently accessed
by more than one process at a time. This meant that the
driver had to support simultaneous access to multiple
CPUs and threads. The development team decided that
OS features should be leveraged to manage concurrency
issues.

Linux provides so-called “device files” to access
system resources such as custom hardware and there was
a choice of whether to implement the drivers to expose
either a single device file per device or a device file per
functional unit.

If only a single device file per device was used, it
would not be possible to block only a single functional
unit, as the entire device would be unblocked when any
functional unit completed its activity.

By choosing to implement a device file per functional
unit the OS regulates concurrency issues. Another benefit
is that the resulting device file naming scheme means that
any functional unit is accessed simply by opening the
appropriate device file, and the simple device file names
help make user source files easy to read.

PCI Device Enumeration
The supported NI devices are all either PCI or PCIe

devices, and are installed in a chassis. All these devices
are enumerated during the boot processes according to the
PCI bus protocol, which probes connected PCI buses. By
default, when a bus bridge is detected, the new bus behind
the bridge is probed before remaining devices on the
parent bus according to the so called “depth first”
enumeration algorithm [1]. Depending on how the chassis
backplane buses are configured, chassis slots are not
guaranteed to be probed in physical slot order, so
ordinarily one can not assume that devices will be probed
in physical slot order. This, in turn, affects the name
indices assigned to “/dev/” device file entries.

If the devices are not enumerated correctly, the
following issues may occur:

· In a large facility with many I&C installations, if the
device names used by planned-for I&C hardware are
not known before the hardware is installed then
configuration can not be set up ahead of hardware
installation.

__

* kevin.meyer@cosylab.com
The Centre of Excellence for Biosensors, Instrumentation and
Process Control - COBIK is an operation financed by the European
Union, European Regional Development Fund and the Republic of
Slovenia, Ministry of Higher Education, Science and Technology.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC056

Control System Upgrades

ISBN 978-3-95450-139-7

1193 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

· When a hardware failure is detected in software,
either by the driver module or by the end-user
application, only the device file name is known to the
software. If there is no reliable mapping between
device file names and hardware location then it can
be difficult to track down faulty hardware.

· When multiple I/O devices are present in an I&C
system, it is vital to ensure that software
communicates with the correct I/O hardware. Failure
to do so means that software is driving the wrong I/O
lines, which can be catastrophic.

Thus, if hardware device file names are created with
known, predictable names, this provides the ability to:

· set up configuration information before the hardware
is operational,

· allow issues that are detected by software to be
reliably mapped to the corresponding physical
hardware,

· ensure that software is always communicating with
the correct hardware.

In order to support deterministic device enumeration,
three strategies were investigated: specifying the device
order via kernel parameters, “udev” rules and using PCI
bus information.

The first strategy of specifying device order via kernel
parameters used the “module_param()” kernel module
API to decode strings specified via driver module
parameters. Parameters are specified either using the
“insmod” command line or via its configuration file, as
defined by “/etc/modprobe.conf”.

The implemented parameter allows the user to specify a
comma-separated list of serial number fragments (starting
from the right-most character) in the required order. For
maximum safety, the entire serial number should be
specified.

The driver initialisation code extracts the serial number
of the detected hardware card, and searches for it in the
list of provided serial numbers. If the serial number is
found, its location index is used to specify the device file
name index. If the serial number is not found, it is given a
sequential index greater than the number of provided
serial numbers.

The second strategy uses the “udev” device manager
installed in RHEL 6, which generates events when
devices are detected, added or removed from the system.
The device manager provides a rules engine that supports
expression matching to identify devices and allows
certain properties, such as the device name, to be
rewritten. Device drivers provide information to “udev”
via the special Linux virtual file system, “sysfs”.

The development team defined “sysfs” variables
“serial” and “suffix” for each functional unit. With these
sysfs variables, one can write “udev” rules that can match
the exposed serial number and renumber the device index
as required.

An example “udev” rule is given in (1), which shows
how for a PXI-6259 (identified by the SUBSYSTEM
keyword) with a serial number of 161382B, the associated
“/dev/” entries could be created with a device prefix of
“pxi6259.1”, i.e. with an index of 1. The “sysfs” variable
“suffix”, which was empty (“”) only for the device root,
contained the path suffix of each functional unit (e.g.
“/ai0” for the the first analogue input channel, “/dio0” for
the first digital I/O channel, etc.) and was used to
complete the rest of the device name.

(1)

A potential problem with this technique is that the
“/sys/class” device path is still sequentially indexed
according to the order in which the detected hardware
cards were initialised - these entries are not reordered.
This means that software that reads the “/sys/class/” file
system may not be able to use the same index as the
device under the “/dev/” file system.

In order to use this strategy, all the serial numbers need
to be known and maintained. In general this is probably
not a problem as this information is often captured for
inventory and laboratory equipment management
purposes. Another issue is that of automatically managing
the “udev” configuration and rule files during
maintenance (upgrades, re-installations etc.) on all
affected machines across the facility.

The third strategy of using PCI bus information
requires specific knowledge of the NI PXI chassis layout
in PCI space. This information is provided by NI in a
configuration file for each chassis. By knowing which
controller card and which chassis are installed, the
information in the configuration file can be used to map
the PCI bus, device and function (BDF) values to a
chassis slot. This information can then be used by the
driver initialisation code to determine the device file
index based on the location of the hardware card in the
PXI chassis. If device file names are to be indexed by
chassis slot order and PCI/PCIe enumeration does not
occur in physical slot order, then preceding chassis slots
must be manually checked during module initialisation.

Handling Reset
If the driver is reset, either via a software call or via

hardware, the driver software closes all connected client
handles and resets all internal state variables to
appropriate values - all outputs are cleared (no output)
and general purpose I/O lines are reset to high impedance
values. Connected clients are notified of device reset
conditions, via either a software exception or an
appropriate error status return code, so that they can
handle the condition appropriately.

SUBSYSTEM=="pxi6259",
SYSFS{serial}=="161382B",
NAME="pxi6259.1%s{suffix}"

THPPC056 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1194C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

Figure 1: A stripped down code fragment of a user application using the driver application library to open a PXI-6259
I/O device acquire analogue input.

USE CASES
Users performing data acquisition experiments need to

be able to control hardware and make precisely timed
measurements with accuracy. A few examples of what the
drivers could provide are given below.

Timing
ITER has a dedicated timing network, the Time

Communication Network (TCN), and their timing and
synchronisation specifications require that all IEEE-1588
hardware in the control system be synchronised to within
50 ns of the IEEE-1588 master time.

The IEEE-1588 PTP hardware (PXI-6682) connected to
the timing network is tested to ensure that this
specifications is adhered to.

Synchronised I/O
The PTP hardware can be configured to generate so-

called “future time events” (FTEs) at precisely defined
moments with 10 ns accuracy (when using the PXI-6682).
This hardware can also be configured to route these event
signals via the NI chassis to other hardware cards in the
chassis to set up precisely timed signal acquisition or
generation.

The I/O hardware (PXI-6259) can also be configured to
start either data acquisition or signal generation on trigger

signals. When these signals are generated by the PTP
timing hardware, the user has precise timing control of
I/O.

In addition, the high precision clock generated by the
timing module can be routed to the I/O module, replacing
the internal sampling clock. At ITER, with its TCN, this
means that facility-wide synchronous sampling to within
50 ns should be possible.

Timestamped Input Events
The PTP hardware has configurable input/output

terminals. When configured for input, the device
hardware timestamps incoming events with 10 or 16 ns
accuracy, for the PXI-6682 and PCI-1588 modules,
respectively.

USER LIBRARY
The user libraries developed in conjunction with the

kernel module conveniently expose all critical
functionality to user applications (such as opening,
resetting and closing the devices, setting configuration
parameters, starting timing or I/O). All functions return a
status code, which must be checked to confirm function
success, since, for example, a hardware reset can occur at
any moment.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC056

Control System Upgrades

ISBN 978-3-95450-139-7

1195 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

A stripped down example is given in Figure 1, which
shows a code fragment setting up the PXI-6259 for
analogue input. All error checks and some loops have
been removed.

The “asyn” [2] driver software can be used to expose
the functionality of these hardware modules to EPICS.

SUMMARY
In this paper we have described the basic design of the

kernel module drivers written by Cosylab for the PCI-
1588, the PXI-6682 and the PXI-6259 NI hardware
modules. Specifics of the API, and device reset handling

are described along with some use cases and a simple
custom user example application code fragment.
Furthermore, the importance of being able to
deterministically enumerate installed hardware is
discussed, along with three strategies for device
enumeration.

REFERENCES
[1] R. Budruk et al, PCI Express System Architecture,

(Addison-Wesley Developer's Press, 2003), 743
[2] asynDriver: Asynchronous Driver Support;

http://www.aps.anl.gov/epics/modules/soft/asyn/

THPPC056 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1196C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

