
ACSYS CAMERA IMPLEMENTATION UTILIZING AN ERLANG
FRAMEWORK TO C++ INTERFACE

C. Briegel, J. Diamond, FNAL†, Batavia, IL 60510, U.S.A.

Abstract
Multiple cameras are integrated into the Accelerator

Control System (ACSys) utilizing an Erlang framework.
Message passing is implemented to provide access into
C++ methods. The framework runs in a multi-core
processor running Scientific Linux. The system provides
full access to any 3 cameras out of approximately 20
cameras collecting 5 Hz frames. JPEG images in memory
or as files are provided for visual information. PNG files
are provided in memory or as files for analysis.
Histograms over the X & Y coordinates are filtered and
analyzed using Root. This implementation is described
and the framework is evaluated.

INTRODUCTION
The Fermilab control system’s [1] [2] camera

implementation consists of a 1U X86 multi-core computer
connecting a dedicated 1G Ethernet to several Prosilica
cameras. A framework written in Erlang runs on a
Scientific Linux (32-bit or 64-bit) operating system to
provide access and control to the control system. The
user has the choice of writing interfaces for data
acquisition in either Erlang or C++ .

The utilization of cameras for instrumentation has
evolved with research and development of electron
accelerators. The application is targeted for the test
facility proposed as ASTA [3] (Advanced
Superconducting Test Accelerator). The cameras range is
between 1.3 megapixel to 5 megapixel with up to 12-bit
resolution.

REQUIREMENTS
The following is a summary of the important

requirements. The requirements document [4] specifies
up to 3 cameras can capture and write to disk loss-less
PNG images at 1Hz without gaps. The cameras can be
triggered with any clock event plus delay. These images
must be accessible via the control system as well as
available to the user for off-line analysis. The images
must have the capability for background subtraction.
Histograms of the X and Y axis will be evaluated with a
Gaussian fit providing the mean, standard deviation, peak
intensity, sigma, and “goodness of fit.” Essentially, all the
available control and read back functions available via the
camera interface should map to parameters accessible by
the control system.

ERLANG INTERFACE
The Erlang-based front end framework [5] provides a

very reliable interface for C++ via a standard Erlang-C
message passing protocol. The framework provides a set
of generic functionality to monitor and control the
framework itself.

The user adds functionality via a configuration file as in
Figure 1. This file loads the added functionality (5
methods in this case) to the framework. The integer 35 in
Figure 1 is the object id used by the request to route the
query to the correct method. The data is typed with a
maximum return size which is checked by the framework.
The method is specified with associated descriptive text.

{daq,
 [{apps,[]},
 {device_list, [
 {35, cexternal, {"prosilica",cdev, ["nothing"]
 [{'UInt32',256,readData,"Prosilica Rd"}
 {‘Char',32768,readDataArray,"Prosilica Ascii"},
 {'Float',256,readsetData,"Prosilica Rd/Wt"},
 {'UInt32',4096,readDataArray32,"Prosilica UI32"},
 {'Float',4096,readDataArrayFP,"Prosilica FP"}]}}
]}
]

Figure 1: Configuration file.
The user’s code registers these callbacks as in Figure 2.

The methods are passed request information to index the
data to be returned or set. The framework automatically
detects illegal requests before it can be received by the
user’s methods. The framework enables the user to easily
add devices for all attributes of the control system.

registerMethods(0,*this,&prosilica::readData,
 &prosilica::setData);
registerMethods(1,*this,&prosilica::readDataArray,
 &prosilica::setDataArray,8192*32);
registerMethods(2,*this,&prosilica::readsetfpData,
 &prosilica::setfpData);
registerMethods(3,*this,&prosilica::readDataArray32,
 &prosilica::setDataArray32,8192*32);
registerMethods(4,*this,&prosilica::readDataArrayFP,
 &prosilica::setDataArrayFP,(4096+11)*32)

Figure 2: User callbacks.
To track status and errors, the framework provides a

revolving set of log files for user diagnostics. Also, the
Erlang framework provides alarm announcements to the
owner’s email every 12 hours reporting potential
problems or abnormal behaviour.

†Operated by Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the United States Department of Energy.

THPPC066 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1228C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

CAMERA IMPLEMENTATION
The camera front end utilizes the Erlang framework as

well as several C++ libraries to complete the solution.
All of the camera specific code is written in C++. Each
active camera (up to 3) instance has a prosilica class
instantiated. This creates a unique object id
corresponding to the instantiated class.

The following describes how the libraries were utilized
to make up the implementation.

PvLib
Allied[6], the manufacture of the Prosilica camera,

provides a library called the PvAPI driver. This library
provides a proprietary interface to Prosilica cameras with
varying attributes depending on the camera model.

Since other manufacturers were evaluated, an attempt
was made to use a camera “agnostic” library via the
GenICam Standard [7]. This proved to be difficult since
the manufacturers did not embrace the interface at the
user API. A class was created for the Prosilica cameras
utilizing the PvLIb enabling a camera specific class for
each unique camera manufacturer. Currently, the
software only implements a single vendor solution.

Recently an additional library, “VIMBA” [8], has been
implemented for the Prosilica camera following the
GenTL Specification that compiles to the GenICam
Standard. Although we have not yet investigated this
interface, the library potentially offers a generic interface
for multiple manufacturers.

Most of the controls for the camera are directly
available in the hardware. The hardware ROI (region of
interest) and binning posed the most difficult to manage
for the user. First, when binning is implemented in
hardware, the pixels are all added to provide a brighter
pixel and the image gets brighter. To keep the image the
same, software binning conditionally averages or drops
pixels. The software binning does not affect the actually
image collected for archiving and future analysis. It only
affects the memory image primarily available for display.
Also, the corresponding software ROI affects only the
memory image. The image sent to disk contains the
entire hardware image. These software controls enable
the user to manipulate the image for display without
affecting the quality and content of the image for analysis.

wxLib
As part of the early development, it was desirable to see

the image. The wxWidgets [9] library was used to
provide a X11 display on a specified IP address. This
provided a temporary display for focusing and
understanding the image until applications could be
developed.

While the wxWidgets library successfully displayed 1
Hz full resolution images and provided a raw file image
for diagnostics, the feature suffered from not being able to
restart the environment redirecting the display to a new IP
address. Thus, the implementaion is conditionally turned
off at this time.

PngLib
PNG [10] files are used to provide a loss-less

compressed image either in memory or written to disk.
Ten writer tasks are available to accept a queue of images
(up to 100). After the specified number of images is
collected, the writer tasks asynchronously processes an
image from the queue until all are done. The files are
written to a user specified directory on the local drive.
This directory becomes the user’s image run with unique
filenames based on the time and date.

A secure mechanism is provided to transfer the entire
directory of files to any user’s local disk. A parameter is
set to create a tar-ball of the directory saved into an NFS
mounted directory. Any browser can then upload the tar-
ball into the local machine for off-line analysis.

One-shot PNG files can be written to memory and
acquired over the network by the control system. For
diagnostics and analysis, these images may also be
written to disk.

Since the compression of PNG files is compute-
intensive, no files are written until all requested images
are captured to prevent data collection errors returned by
the PvLib. The error correlates to high CPU utilization
and the fundamental cause is not understood at this time.
The upgrade from 2 cores to 8 cores may eliminate this
problem.

JpegLib
JPEG [11] files are used to provide comfort displays for

focusing and image location. JPEG files can be
significantly compressed, but image data is lost
depending on the quality (1-99) requested. The JPEG
image conditionally can be sent to disk consisting of the
last 10 images for diagnostics.

Generally, the JPEG images are kept in memory for
control system access. A maximum size can be specified
to optimize the control system’s access to a single request
for data (typically 32000 bytes). When the max size is
specified, a heuristic is invoked to change the image size
by modifying the quality and software binning of the
image. The software bin can either be the average of a
square pixel or a selected single point within the square.
Further, to minimize the size or increase the quality, the
user can specify the software ROI.

Root
ROOT [12] is the physic analysis package maintained

by CERN and supported at Fermilab. There is a high
confidence in the results of ROOT and ROOT can adjust
its boundaries to provide a focused region for the fit.
Also, ROOT can easily change the type of fit with a
slightly modified algorithm if desired.

CAMERA APPLICATIONS
There are effectively three applications. The primary

user application is written in Java and can run either
natively or on a console server. This application makes
use of the JPEG image for feedback to the user and can

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC066

Control System Upgrades

ISBN 978-3-95450-139-7

1229 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

manipulate all aspects of the camera. It can save and
display one-shot PNG files. It displays histogram plots
and provides local analysis of the histogram Gaussian fit
contrasting the front end’s fit analysis.

The ACSys parameter page can manipulate all
parameters and provides access to generic parameters for
the Erlang framework. This provides immediate access to
all parameters in a standard application.

A set of synoptic displays [13] [14] provides an easy
way to check the selected camera’s information. It also
provides histogram plots, Gaussian fit plots and the
Gaussian analysis.

RESULTS
The camera system has been used to see the first beam

achieved this summer [15]. The camera system has been
improved to accommodate operational needs and is
becoming an integral instrument for measuring the beam.

The utilization of software versus hardware ROI and
binning is an effective mechanism to reduce the data size
without sacrificing the quality of the image files.

The Erlang framework has proven to be very mature
and robust. Erlang is a functional language that
minimizes many run-time failures. Most of the failures
have been attributable to the C++ coding and the
utilization of the C++ libraries. As a user of the
framework, these are the errors I expect, tolerate and fix.
Thus, the framework has been a pleasant experience to
integrate my C++ application into the control system.

ACKNOWLEDGEMENTS
The Erlang framework was implemented by Rich

Neswold, Dennis Nicklaus, and Jerry Firebaugh from the
Femilab’s controls group.

REFERENCES
[1] J. Patrick, “ACNET Control System Overview,”

Fermilab Beams-doc-1762-v1,
http://beamdocs.fnal.gov/AD-
public/DocDB/ShowDocument?docid=176

[2] K. Cahill, L. Carmichael, D. Finstrom, B.
Hendricks, S. Lackey, R. Neswold, J. Patrick, A.
Petrov, C. Schumann, J. Smedinghoff, “Fermilab
Control System,” Fermilab Beams-doc-3260-v3,
http://beamdocs.fnal.gov/AD-
public/DocDB/ShowDocument?docid=326

[3] http://asta.fnal.gov
[4] M.Church, “Software Specification for Prosilica

Cameras at ASTA (in progress),” Fermilab (July
27,2012). [3] http://synoptic.fnal.gov

[5] D. Nicklaus, “An Erlang-based Front End
Framework for Accelerator Controls,” ICALEPCS
(2011); Grenoble, France.

[6] http://www.alliedvisiontec.com
[7] http://emva.org
[8] http://www.alliedvisiontec.com/us/products/software

/vimba-sdk.html
[9] http://www.wxwidgets.org
[10] http://www.libpng.org
[11] http://www.jpeg.org
[12] http://www-root.fnal.gov
[13] http://synoptic.fnal.gov
[14] A. Petrov, Synoptic User Guide,

http://beamdocs.fnal.gov/AD/DocDB/0035/003567/
002/synoptic-1_2.pdf

[15] http://www.fnal.gov/pub/today/archive/archive_2
013/today13-07-02.html

THPPC066 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1230C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

