
COMPARISON OF SYNCHRONIZATION LAYERS FOR DESIGN OF

TIMING SYSTEMS

A. Aulin Söderqvist, N. Claesson, J. Neves Rodrigues, Lund University, Lund, Sweden∗

R. Tavčar, R. Štefanič, J. Dedič, Cosylab, Ljubljana, Slovenia†

Abstract

Two synchronization layers for timing systems in large

experimental physics control systems are compared. White

Rabbit (WR), which is an emerging standard, is compared

against the well-established event based approach. Several

typical timing system services have been implemented on

an FPGA using WR to explore its concepts and architec-

ture, which is fundamentally different from an event based.

Both timing system synchronization layers were evalu-

ated based on typical requirements of current accelerator

projects and with regard to other parameters such as scal-

ability. The proposed design methodology demonstrates

how WR can be deployed in future accelerator projects.

INTRODUCTION

The timing system (TS) is an essential part of the con-

trol system (CS) in current accelerator projects. In gen-

eral, the TS provides services to the CS according to the

requirements of the accelerator, see Fig. 1. Commercial

off the shelf (COTS) products with adequate firmware are

available that fits certain accelerators. On the other hand,

usually different machines have unique requirements that

make customization inevitable.

A given COTS product together with part of its firmware

may be called a synchronization layer (SL), as it provides

synchronous action and a well defined interface, see Fig. 2.

This article reviews two different SLs using this definition.

Their interfaces are compared as they have direct implica-

tions on how the TS can be implemented.

A limited set of TS services were implemented to eval-

uate the interfaces of White Rabbit (WR) [1]. Other TSs

were also studied in combination to this implementation,

i.e., the Real-time Event Distribution Network (REDNET)

[2], the SINAP timing system [3] and the General Machine

Timing system (GMT) [4].

REDNET is a recently finished, Micro-Research Finland

(MRF) based [5], TS, which is being deployed at MedAus-

tron. MRF is a well-established event based SL.

The SINAP timing system is another event based TS,

developed for SSRF (SINAP, Shanghai) and already suc-

cessfully installed in other facilities.

GMT is being developed for GSI/FAIR and will be WR

based. WR is an open source project and the reference im-

plementations are manufactured by several suppliers.

∗ et07aa0@student.lth.se, et07nc7@student.lth.se,

joachim.rodrigues@eit.lth.se
† rok.tavcar@cosylab.com, rok.stefanic@cosylab.com,

joze.dedic@cosylab.com

Figure 1: The control system needs several timing critical

services, which are provided by the timing system. The

timing system itself is constructed on a synchronization

layer which provides the basic capabilites to enable imple-

mentation of such services.

Figure 2: The timing receiver firmware can be seen as

two separate modules. The synchronization layer, which

is given by the vendor (MRF/WR), and the custom part,

which is implemented as part of the timing system.

TIMING SYSTEM SERVICES

Given the task to design a TS it can be tempting to take a

COTS product to see its capabilities and base the TS imple-

mentation on existing functionality. If a COTS is chosen

before the real requirements are known it can lead to un-

necessary work with adaptation of its features to match the

required services. Instead requirements need to be defined

THPPC102 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1296C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Timing and Sync



before choosing an existing COTS product to decide if it is

sufficient or if a custom solution is needed.

There are typical requirements like accuracy and preci-

sion on a TS which are tightly coupled to the SL. Other

than that there may be a multitude of other requirements

that need special attention and more extensive investiga-

tion. Requirements need to define the services of the TS

and decide the SL with lowest complexity fulfilling the

needs.

Fundamental Services

Common to all TS is the need of coordinated actions in

the distributed nodes. The CS issues a request for certain

behaviour in the accelerator and it is up to the TS to carry

out the request. This often leads to a sequencer which con-

tinuously generates actions to the Timing Receivers (TR),

the actions which are needed to carry out the request from

the CS. Depending on requirements there can be multiple

sequencers.

TRs usually have trigger lines to front-end-devices to

signal them at the right moment. Trigger lines are digi-

tal outputs generating timing critical pulses. These pulses

must be executed at a specific point in time and have con-

figurable length.

Other than triggering devices there is also a need of

time stamping to provide accurate information on when any

event, input or output, actually occurred. This is tightly

coupled with tracking of time.

Machine Specific Services

There are also machine specific services that needs to

be provided. An example is Virtual Accelerators (VAccs),

which are implemented in REDNET [2]. Multiple VAccs

run on the same accelerator. This allows multiple users

to access and simultaneously reconfigure the TS via sepa-

rate VAccs. It makes fast switching between configurations

possible, which minimizes downtime. While an accelera-

tor project is finalized it enables parallel commissioning of

different parts.

Besides this there are often requirements for real-time

data services to the TRs. For example front-end devices

connected to TRs need configuration data.

SYNCHRONIZATION LAYER

The SL is an abstraction layer that conceals the com-

plexity of synchronization from the TS, thus providing

synchronous execution possibilities at distributed nodes.

Knowing the difference between clock and time is an im-

portant prerequisite to understand SLs.

Clock, in the digital realm, is only pulses that are re-

peated at a given frequency. By letting two pulse trains

have the same frequency and phase they are synchronized.

Time, on the other hand, can be defined in multiple

ways. Usually it is the time past since a reference mo-

ment. In particle accelerators it is often a derivative of TAI

(Temps atomique international, French name), which is the

weighted average of over 200 atomic clocks, given in sec-

onds. This can be obtained from GPS (Global Positioning

System) signals.

Synchronization

MRF and WR synchronizes in two conceptual differ-

ent ways. In MRF the most important synchronization is

the clock. WR instead primarily focuses on synchronizing

time.

Event-based such as MRF and SINAP is therefore con-

sidered real-time, with neglectable downlink latency, and

the TRs act immediately. Whereas WR is less real-time

due to the Ethernet standard. Both TSs have synchronized

clock and time. But, since WR rely on absolute time for

synchronized actions, it has to have a more precise time

synchronization.

Interfaces

In event-based TSs the timing master (TM) sends an

identifier over a synchronized network which all TRs si-

multaneously receive. This, in addition to a real-time dis-

tributed bus, is seen as its interface to the custom logic in-

side the FPGA (Field-programmable gate array) firmware.

On WR there are two interfaces, one for timing and one

for communication. The timing interface gives you current

TAI and a clock. The clock has the same frequency and

phase in all TRs down to less than 1 ns. The communi-

cation interface is a MAC interface and can be used as a

communication channel between all TMs and TRs.

Comparison

The performance measurements available cannot be

compared in a fair manner. Instead characteristics which

affect the TS implementation are given. Only WR and

MRF performance figures are addressed, aiming to give

a hint of the differences due to synchronization approach

specifics.

The upstream performance is important because it is cru-

cial for the services that require a loop-back from the TRs

to the TM. MRF has a fast, but limited, concentrator and

WR has a slower, but more generic, switch. The MRF con-

centrator delay is in the 100 – 200 ns range, according to

[6]. The lowest delay achievable with a WR switch is in the

10 – 20 µs range, according to [7]. Since the WR switch is

not finalized this may change in the future.

One study [8] has measured the offsets between the syn-

chronized outputs of two WR nodes. This is called accu-

racy and it was measured to 517 ps at that set-up. Any sim-

ilar published numbers for MRF was not found.

The same study also showed that the performance (jitter)

between the outputs of two WR nodes was 119 ps. In MRF,

the jitter given for one card is 15 ps RMS [5]. Assuming

that there is no influence because of the network, this can

give a hint about MRF performance.

Measuring accuracy and precision in a SL depends heav-

ily on the set-up, number of fan-outs, cable length, environ-

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC102

Timing and Sync

ISBN 978-3-95450-139-7

1297 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



mental differences, etc. In the future a dedicated test bed

will be set-up to compare the SLs.

EXAMPLE IMPLEMENTATION OF A

TIMING SYSTEM

The goal for the implemented TS is to explore the con-

cept of WR. A fundamental functionality is time stamping

of inputs and outputs as well as to trigger outputs. It is

straight forward to implement time stamping in WR, which

is why this section deals mostly with how to trigger outputs

at certain moments, called trigger lines. These are realized

by the block called GPIO Core in the architecture, Fig. 3.

The WR firmware [9] provides two interesting interfaces

in TS point of view. There is the timing interface which

contains all timing information needed. It provides a pre-

cise clock and the exact time with 8 nano seconds gran-

ularity. It also provides a MAC interface which enables

network communication via Ethernet frames.

There is a fundamental difference between a TS imple-

mented using WR and one using an event-based SL. WR

has the exact time while the event-based system acts im-

midiatley on a received event. Because of this, designing

the TR has to have a completely different approach.

In WR there is a high data overhead since it uses Eth-

ernet frames for communication. If a TS based on WR is

designed conceptually the same as a TS on an event based

SL, TM pushing events downwards at the same rate as they

are emitted, the rate of events received at the TR would be

substantially lower. To alleviate this problem, local buffer-

ing of network messages in the TR is needed.

To ensure a high emit rate it is not enough to buffer in-

coming messages, the overhead from Ethernet will still be

a limiting factor. This is addressed by having sequences of

output patterns stored in the TRs instead of the TM. The

messages that are sent to the TRs are mapped with the se-

quences. Sequences stored locally enables low latency and

high access rate.

Each instance in the output sequence must declare a mo-

ment in time when to emit. It is carried out when this time

matches the exact time coming from the timing interface.

In addition to this, there is configuration data such as pulse

length which need be managed. The logic surrounding this

adds latency. To be able to emit at a high rate, each output

must have a buffer.

The architecture seen in Fig. 3 is a simplification of this

implementation only showing how the WRPC interfaces

are connected to the custom logic. Since the custom core

uses a Wishbone interface, the Etherbone core was ideal

to package the communication. The Etherbone core wraps

wishbone operations in Ethernet frames.

RESULT

The implemented proof-of-concept TS provides a set of

fundamental services, e.g., delivering synchronized pulses

at multiple TRs.

Figure 3: This is a simplification of the designed tim-

ing receiver architecture. It shows how the White Rabbit

firmware interfaces are connected and what kind of data is

being exchanged. Everything except the WR firmware is

considered to be custom.

The result of the comparison is that, even though the in-

terfaces are widely different, similar services can be imple-

mented with both SLs. However, there will be conceptual

architectural differences, such as, the impact from schedul-

ing will require output queues in a WR based TS.

Strict requirements for low latency and deterministic

loop-back latency can exclude WR as a viable option.

CONCLUSION

From the control system developer point of view there is

no difference between the two synchronization layers. But,

because of completely different approach to synchroniza-

tion, there exists important implications to key characteris-

tics which must be taken into account when choosing plat-

form. Similar functionality is possible to implement with

both.

To the timing system developer, on the other hand, the

different interfaces will result in completely different tim-

ing system architectures. The White Rabbit architecture

will revolve around absolute time scheduling. This is, nev-

ertheless, already very important when designing a tim-

ing system for a particle accelerator. Event based timing

system implementations will instead revolve around down-

streaming precisely timed event triggers.

ACKNOWLEDGEMENT

This article was made possible thanks to collaboration

with Cosylab d. d., Control Systems Laboratory, Ljubl-

jana, Slovenia. Cosylab assisted with experience in timing

systems and provided a White Rabbit platform as well as

hardware from Micro-Research Finland and Shanghai In-

stitute of Applied Physics.

THPPC102 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1298C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Timing and Sync



REFERENCES

[1] P. Moreira, J. Serrano, T. Włostowski, P. Loschmidt and G.

Gaderer, “White Rabbit: Sub-Nanosecond Timing Distri-

bution over Ethernet”, Proceedings of ISPCS2009, Bresia,

Italy, 2009.

[2] R. Tavcar, R. Stefanic, Z. Kroflic, J. Dedic and J. Gutleber,

“Timing system for Medaustron based on off-the-shelf MRF

transport layer”, Proceedings of IPAC2011, San Sebastián,

Spain, 2011.

[3] M. Liu, C. X. Yin, L. Y. Zhao, D. K. Liu, “Development

Status of Sinap Timing System”, Proceedings of IPAC2013,

Shanghai, China, 2013.

[4] D. Beck, R. Bar, M. Kreider, C. Prados, S. Rauch, W. Terp-

stra and M. Zweig, “The new White Rabbit based timing

system for the FAIR facility”, Proceedings of PCaPAC2012,

Kolkata, India, 2012.

[5] J. Pietarinen, “MRF Timing System”, Timing Workshop

CERN, February 2008.

[6] J. Pietarinen, “Timing System with Two-Way Signalling”,

EPICS Meeting Padova, October 2008.

[7] M. Kreider, “The FAIR Timing master: A discussion of

performance requirements and architectures for a high-

precision timing system”, Proceedings of ICALEPCS2011,

Grenoble, France, 2011.

[8] M. Lipinski, T. Włostowski, J. Serrano, P. Alvarez, J. D. G.

Cobas, A. Rubini and P. Moreira, “Performance results of

the first White Rabbit installation for CNGS time transfer”,

Proceedings of ISPCS2012, San Francisco, USA, 2012.

[9] “Open Hardware Repository”, 2009. [Online]. Available:

http://www.ohwr.org.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC102

Timing and Sync

ISBN 978-3-95450-139-7

1299 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


