
A TIMING SYSTEM FOR CYCLE BASED ACCELERATORS

J. Gutleber, CERN, Geneva, Switzerland
Z. Croflic, J. Dedic, R. Stefanic, Cosylab, Ljubljana, Slovenia

Abstract
Synchrotron accelerators with multiple ion sources and

beam lines require a high degree of flexibility to define
beam cycle timing sequences. We have therefore designed
a ready-to-use accelerator timing system appliance based
on off-the-shelf hardware and software that can fit mid-
size accelerators and that is easy to adapt to specific user
needs. This Real Time Event Distribution Network
(REDNet) has been developed under the guidance of
CERN within the MedAustron-CERN collaboration. The
system is based on the MRF transport layer and has been
implemented by Cosylab. While we have used the NI
PXIe platform, it is straightforward to obtain receivers for
other platforms such as VME. The following
characteristics are key to its readiness for use: (1) turn-
key system comprising hardware, transport layer,
application software and open integration interfaces, (2)
performance suitable for a range of accelerators, (3)
multiple virtual timing systems in one physical box, (4)
documentation developed according to V-model. Given
the maturity of the development, we have decided to
make REDNet available via the integration partner.

MOTIVATION
Traditionally, timing systems for particle accelerators

tend to be solutions that are tailored to a particular
project, whether based on custom or on off-the-shelf
components. The Proton Ion Medical Machine Study
(PIMMS) at CERN [1] defined the characteristics for an
entire class of mid-scale synchrotron-based particle
accelerators for light-ion cancer therapy. That class of
machine requires a high degree of configurability, induced
by the need for large amounts of different beam
characteristics needed for medical irradiation sessions.
Although the motivation to design and implement a main
timing system has its origin in the MedAustron project at
CERN [2,3], the goal was to provide a generally usable
main timing system appliance for a mid-size class of
particle accelerators for industrial and medical
applications. PIMMS-type accelerators are now emerging
in several places. They share a set of commonalities,
which define the operation concept and required timing
functions, which we outline in the following two sections.

OPERATION CONCEPTS
The task of the main timing system is to distribute

events in real-time to front-end controllers of beam-line
elements, where they trigger actions, which are
associated to particular events. The system enables front-
end controllers to carry out the actions in a synchronized
fashion. Hence, we call the system REDNet, Real-Time
Event Distribution Network. The point in time at which
actions take place determine the beam-generation process.

We call a pre-defined sequence of events for a particular
process that generates a beam with a certain set of
characteristics a cycle. A medical irradiation session or an
experimental physics beam application consists of a
sequence of pre-defined cycles, called a run, see Fig. 1.

Figure 1: Events trigger actions in frontend controllers
 in real-time. The actions are responses to events that are
 used for beam generation purposes.

DESIGN

Overview
The overall design goal was to come to an accelerator

timing system appliance that can be part of a general
Medical Accelerator Control System [4]. It includes all
elements spanning from transport to processing hardware,
including software drivers, libraries and a generally
usable timing system sequencer application that can be
integrated with industrial SCADA systems and tools, see
 Fig. 2.

Timing System Appliance

MTG Appplication

EVG Driver

Windows OS

PXIe CPU EVG 300

R
OPC

R
TCP/IP

Supervisory
Control

Beam Cycle
Request

Client

Optical Fanout

A
pplication
S

oftw
are

H
ardw

are
S

ervices

Publisher/
Subscriber

Configuration
Data Web

Server

Timing Sequences

Labview Framework

Optical Fanout

Log Server

R
TCP/IP

R
TCP/IP

R
HTTP

C
lients

Figure 2: Schematic overview of appliance.

Although a specific hardware, operating system and
programming language environment had to be selected,
care was taken that the appliance can be integrated

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC104

Timing and Sync

ISBN 978-3-95450-139-7

1303 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

seamlessly into different environments. Consequently an
emphasis was put on using accepted protocols and
technologies for supervisory control and configuration.
Details on the technologies used for implementation are
highlighted in section Deployment.

Functions
The foundation of the system is the timing specification

for a sequence of events that can be used for a set of beam
cycles. A run is composed from an arbitrary amount of
timing sequences, limited only by the memory capacity
controller CPU. Timing sequences are specified in an
open XML format (see example below). A timing
sequence contains a list of events with time and broadcast
indications. The appliance caches timing sequences from
the configuration Web server. Temporarily, sequences can
be overridden using the SCADA interface for machine
development and fine-tuning the timing specifications.
When a client requests a particular beam cycle, the
appliance resolves the mapping timing sequence and
starts broadcasting the events in real-time according to
their timing indications.

<Ti mi ngSequence i d=" Exampl eCycl e"
ver si on=" 1. 0. 0" UUI D=" …" st at us=" i n wor k"
aut hor =" …"
cr eat i on=" 2011- 02- 09T09: 22: 30. 835593Z" …>

 <Event TypeI dent i f i er i d=" St ar t Cycl e" t i me=" 0"
spec_t i me=" 0" i sDynami c=" f al se" r t =" t r ue"
nonr t =" t r ue" acknowl edge=" f al se" i ndex=" 0"
absol ut e_t i me=" 0" i s_pr i mar y=" t r ue" / >

 …
 <Event TypeI dent i f i er i d=" St ar t Accel er at i on"

t i me=" 305000" spec_t i me=" 310000"
r el at ed_event =" 10" i sDynami c=" f al se"
r t =" t r ue" nonr t =" t r ue" acknowl edge=" f al se"
i ndex=" 12" absol ut e_t i me=" 577242"
i s_pr i mar y=" t r ue" / >

…
 <Event TypeI dent i f i er i d=" EndCycl e"

t i me=" 479000" spec_t i me=" 479000"
r el at ed_event =" 26" i sDynami c=" f al se"
r t =" t r ue" nonr t =" t r ue" acknowl edge=" f al se"
i ndex=" 27" absol ut e_t i me=" 3000744"
i s_pr i mar y=" t r ue" / >

</ Ti mi ngSequence>

Code 1: Example XML timing sequence.

Events are freely specified as human readable names.
Up to 250 different user-defined events can be specified
without code changes such that the system can be easily
configured to use in different accelerators. The same
event can be specified multiple times in a single timing
sequence. The system is designed for timing sequences
with durations up to 1024 minutes and up to 512 events
per timing sequence. However, these limits may be
changed at deployment time. Two hard assigned events
are always present in every timing sequence, one that
indicates the start and one that indicates the end of the
cycle. Timing events in a sequence must at least be spaced
by 1 usec. A single timing sequence can be assigned to
multiple different accelerator cycles to reduce the overall
amount of required timing sequences. Assignment of
timing sequences to cycles is based on a selection of
beam characteristics such as particle type, energy,

extraction duration, beam size, target beamline and other
possible cycle parameters. Each event is tagged with a
timestamp at generation time that can be used to correlate
data at event receivers. A particular heartbeat event is
broadcast at a configurable, regular interval, for instance
at 10 Hz. The start of timing sequence generation can be
configured with a negative offset with respect to the
heartbeat, such that the regularly broadcast heartbeat
events occur always at the same time within a timing
sequence. This feature serves usually the synchronization
between a regularly pulsed injector and the synchrotron.
Additional local reference clocks are available as
firmware plugin-components for the event receiver cards.
These highly precise reference clocks can be phase
corrected with respect to the start of a cycle. Examples are
provisioning of a 10 MHz clock for backplane
synchronization, 200 kHz as clock for a low-level RF
system or 100 MHz for a set of synchronously working
digital signal processors.

The user can enqueue any pre-defined event
asynchronously into an active run by indicating a relative
time delay with respect to another event. The timing
system will then include the user event in the next cycle
and distribute it as part of the pre-defined timing
sequence. This feature lets automated procedures easily
insert events to trigger measurements at precise points in
time dynamically.

Timing sequences are pre-defined in released
configurations that are kept on a Web server. Upon startup
of the main timing system generator, the system
determines if the latest released set of software and timing
sequences is locally cached and updates its configuration
if needed. A user can download additional timing
sequences at any time into the timing sequence and define
to which beam cycles the newly provided sequence
matches.

The system has four modes of operation: in service
mode, the software and firmware can be updated and
system tests can be performed. In machine physics mode
the system can be used to perform runs and play timing
sequences, which are not marked for clinical or quality
assurance use. In this mode, the user can freely download
new timing sequences, change and add associations of
timing sequences to beam cycles. In quality assurance
mode any modification of the pre-loaded, released
configuration of timing sequences and mapping of
sequences to cycles is unchangeable. In clinical mode, the
same constraints as for quality assurance mode apply and
only requests to play cycles that are marked for clinical
mode are accepted.

While a timing sequence is played out, the system
already accepts a request for a next sequence, such that
fully pipelined operation without dead-time between
cycles can be achieved. The client can choose if the next
timing sequence starts as soon as the current sequence
ends or if the system should wait for an additional start
request. Once a sequence of events is generated, it can be
aborted or a request to fast-forward to a specific timing
event in the sequence is possible. The latter function

THPPC104 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1304C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Timing and Sync

permits operators to stop a running timing sequence, by
ensuring that the accelerator completes the cycle in a
well-defined manner.

One physical system implements five virtual timing
systems, called timing execution slots that can be
operated concurrently [5]. A client requests a timing
system slot with the request to start a run. Consequently,
the frontend controllers that will eventually receive events
are configured to work with a particular timing slot before
the run is started. This functionality permits to perform
multiple tasks such as beam commissioning, hardware
commissioning, software development or testing of
medical frontend systems concurrently without the need
to purchase and re-wire multiple timing systems.

Real-time distribution of events from generator to
receivers is unidirectional broadcast via an optical fanout.
Message integrity is verified by CRC16 checking at the
receiver and the client-side software moves to failed state
if an error is detected. Frontend controllers can, however,
acknowledge event reception to the generator via TCP/IP
messages over the control system’s Ethernet
infrastructure. If acknowledgements are not received
within a deadline, the virtual timing system moves to
failed state. The design foresees the extension to postpone
cycle execution until the event is acknowledgement by a
configured number of front-end controller applications. In
addition, the XML format permits defining the emission
of events with GPS timestamp at 100 nsec precision also
via a non-real time publisher/subscriber mechanism over
Ethernet. Such, user interface applications can easily
display and correlate data that have been acquired as
result of event reception in front-end controllers.

The timing system scales to several thousands of event
receivers since the broadcast network can be built from
multiple fanout stages. A single level fanout configuration
accommodates 100 possible event receivers. For
MedAustron, only 30 frontend controllers with real-time
event reception capability were required.

Performance
The real-time performance of the timing system has been
matched to the PIMMS class of particle accelerators, but
is suitable for a variety of different accelerators. At an
injection energy of 7 MeV the revolution time in the
synchrotron is 2 sec. At highest extraction energy at 800
MeV the revolution time is 0.1 sec. Timing events are
distributed to destinations in real-time such that two
devices receive the same event within a time window of
less than 1 sec. In addition, devices that do not have
processing capabilities, such as selected power converters
or oscilloscopes, can receive signals corresponding to
timing events as electrical or optical pulses directly via
front-panel connections. This functionality allows high-
precision synchronization of two event receivers down to
10 nanoseconds as shown in the figure below. The total
latency from event emission to event response generation
at the receiver side is 200 nsec + 5 nsec/m fiber,
effectively indicating to the user that the absolute
timestamp of an event is close to the time at which an

action occurs in the front-end controller. The constant
latency between event distribution and receiver-side
response generation is, however, not an issue since all
events, including the start of a cycle is shifted by this
constant time. On the receiver, event identifier, cycle
identifier, timing slot, run number and a 100 nsec GPS
timestamp of event emission time are made available to
applications via a software API, see Fig. 3.

Main Timing Receiver

Delay 1

Delay 2

Event
Receiver

Timing
Broadcast
Network

Injection
Bumper

PCO

Fast
Deflector

PCO

Delay in nsec range

Event

Optical or electrical trigger link

Figure 3: High-precision synchronization of beamline
elements.

For simple development setups it is possible to emulate
the presence of a complete timing system with a software
application in a front-end controller that hosts a timing
receiver card. It permits to run a locally loaded timing
sequence and exercise the behaviour of applications and
hardware devices that require event triggering without the
need for the entire control system or the physical presence
of the main timing system generator system. Generation
of electrical and optical pulses on the front-panel outputs
and on the front-end controller bus backplane can also be
directly requested via calls to the software API. This
function permits testing the most basic application and
hardware functions during development time without the
need for timing sequences and defined events.

DEPLOYMENT
The deployed timing system is composed from a

Symmetrikom SyncServer S350 reference clock, an
OCXO 10 MHz to 100 MHz frequency multiplier, a
National Instruments 3U 8 slot PXIe crate with PXIe
CPU, an MRF [6] PXIe EVG card, a 6U cPCI crate and 6
MRF optical fanout cards. The timing system broadcast
network uses standard Gigabit Ethernet OM3 fiber-pairs
and OM1 single fibers are used for optical triggers from
timing receiver cards to power converters. The system is
installed in one 19” rack.

The application software is written in Labview on top
of the 64 bit MS Windows 7 operating system. The MRF
EVG 300 card features a Virtex 5 FPGA, which is
programmed in VHDL. The timing system generator
application is based on a common Labview framework
that can also be used to program frontend controllers on
PXI and PXIe platforms using Labview and Labview/RT.
Currently, non PXI/PXIe FECs are integrated via timing
receiver card front-panel TTL pulses and a low-latency
datagram over the PXIe CPU’s serial output. However,
making receiver libraries available on a different
operating system is a mere implementation effort, since
the design is well-documented.

Configuration, state and mode transition changes and
monitoring are performed via the OPC protocol. Timing

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC104

Timing and Sync

ISBN 978-3-95450-139-7

1305 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

events can also be published along with run number, cycle
number, timing slot number and GPS timestamp via a
proprietary, documented TCP/IP application layer
protocol to a publisher/subscriber system. Publishing and
subscription API libraries exist for C, C++, Labview and
C#. Application and system log messages are distributed
to a log4net based log server via the originally log4j
developed UDP based log protocol. Log message pre-
filtering and selection of log messages to file or network
are configurable in the appliance to keep log message
traffic under control during operation. Timing sequences,
framework, driver and application software releases are
picked autonomously from a Web server via the HTTP
protocol. Graphical user interfaces for testing exist as
Labview panels and ready-to-use operation panels exist
for the SIEMENS/ETM WinCC OA SCADA tool. If the
latter tool is used, data logging, alarming and on-the-fly
modification of timing sequences for machine
development are available in WinCC OA as scripts and
datapoint element configurations, see Fig. 4.

Figure 4: Appliance as delivered and deployed.

FUTURE WORK
The current implementation includes the possibility

require acknowledgements for individual timing events. If
the indicated number of acknowledgements is not
received by the timing system generator within a
specified timeout, generation will be stopped by the
system. The implementation’s focus was on the
functionality rather than on performance. The

acknowledgement mechanism is therefore currently
available over TCP/IP only. Particular application may,
however, require low-latency acknowledgements within
microseconds and the possibility to pause timing
sequence generation rather than aborting it. The system
design has been foreseen to accommodate those
additional features that can be implemented if the arises.
In addition, the design foresees to pause cycle execution
rather than moving to failed until acknowledgements have
been collected. Supervisory control protocol is currently
implemented via the National Instruments OPC/Shared
Variable engine. It is suggested to upgrade the software to
Labview 2012 and switching to OPC/UA protocol to
improve performance and stability.

CONCLUSIONS
Based on the PIMMS design, an accelerator main

timing system for a mid-size class of synchrotron
accelerators requiring large amounts of different beam
cycles, no dead-times between cycles and a large amount
of flexibility without a need to intervene at hardware or
firmware level has been devised. Test operation has
shown good performance and robustness. We have
therefore decided to make the CERN IP and design
available through an integration partner, Cosylab
(Ljubljana, Slovenia). The system is based on the MRF
timing system transport layer. Current implementations by
Cosylab are available for PXI and PXIe systems with
Labview software support for front-end controller
applications. The design is, however, flexible and timing
receiver cards for other platforms such as VME exist such
that accommodating different hardware and operating
system platforms are a mere implementation task.

REFERENCES
[1] L. Bodano, M. Benedikt, P. Bryant et al., PIMMS

study, CERN-PS-00-010-DI.
[2] M. Benedikt, U. Dorda, J. Gutleber et al., “Overview

of the MedAustron design and technology choices”,
Conf. Proc. C100523(2010) IPAC-2010-MOPEA20.

[3] M. Benedikt, A. Fabich, “MedAustron – Austrian hadron
therapy centre”, Nuclear Science Symposium Conference
Record 2008, IEEE, p.5597-5599, 19-25 Oct. (2008).

[4] J. Gutleber, R. Moser, “The MedAustron Accelerator
Control System: Design, Installation and Commissioning”,
in proceedings of ICALEPCS 2013 conference.

[5] R. Stefanic et al., “Timing System Solution for
MedAustron; Real-Time Event and Data Distribution
Network”, Proc. ICALEPCS 2011, WEPMN015.

[6] J. Pietarinen, “MRF Timing System”, Timing Workshop
CERN, February (2008).

GPS/NTP
Provides pulse per second,

10 MHz reference
GPS date and timestamp

OCXO
Multiplies 10 MHz to 100 MHz

for PXIe reference frequency

Main Timing Generator
PXIe crate & CPU, MRF EVG,

application software

Optical Fanout
Broadcast of timing event and

Command stream to FECs

THPPC104 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1306C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Timing and Sync

