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Abstract 
Synchrotron accelerators with multiple ion sources and 

beam lines require a high degree of flexibility to define 
beam cycle timing sequences. We have therefore designed 
a ready-to-use accelerator timing system appliance based 
on off-the-shelf hardware and software that can fit mid-
size accelerators and that is easy to adapt to specific user 
needs. This Real Time Event Distribution Network 
(REDNet) has been developed under the guidance of 
CERN within the MedAustron-CERN collaboration. The 
system is based on the MRF transport layer and has been 
implemented by Cosylab. While we have used the NI 
PXIe platform, it is straightforward to obtain receivers for 
other platforms such as VME. The following 
characteristics are key to its readiness for use: (1) turn-
key system comprising hardware, transport layer, 
application software and open integration interfaces, (2) 
performance suitable for a range of accelerators, (3) 
multiple virtual timing systems in one physical box, (4) 
documentation developed according to V-model. Given 
the maturity of the development, we have decided to 
make REDNet available via the integration partner. 

MOTIVATION 
Traditionally, timing systems for particle accelerators 

tend to be solutions that are tailored to a particular 
project, whether based on custom or on off-the-shelf 
components. The Proton Ion Medical Machine Study 
(PIMMS) at CERN [1] defined the characteristics for an 
entire class of mid-scale synchrotron-based particle 
accelerators for light-ion cancer therapy. That class of 
machine requires a high degree of configurability, induced 
by the need for large amounts of different beam 
characteristics needed for medical irradiation sessions. 
Although the motivation to design and implement a main 
timing system has its origin in the MedAustron project at 
CERN [2,3], the goal was to provide a generally usable 
main timing system appliance for a mid-size class of 
particle accelerators for industrial and medical 
applications. PIMMS-type accelerators are now emerging 
in several places. They share a set of commonalities, 
which define the operation concept and required timing 
functions, which we outline in the following two sections.  

OPERATION CONCEPTS 
The task of the main timing system is to distribute 

events in real-time to front-end controllers of beam-line 
elements, where they trigger actions, which are 
associated to particular events. The system enables front-
end controllers to carry out the actions in a synchronized 
fashion. Hence, we call the system REDNet, Real-Time 
Event Distribution Network. The point in time at which 
actions take place determine the beam-generation process. 

We call a pre-defined sequence of events for a particular 
process that generates a beam with a certain set of 
characteristics a cycle. A medical irradiation session or an 
experimental physics beam application consists of a 
sequence of pre-defined cycles, called a run, see Fig. 1.  

 

Figure 1:  Events trigger actions in frontend  controllers
 in real-time. The actions are responses to events  that  are
 used for beam generation purposes.  

DESIGN 

Overview 
The overall design goal was to come to an accelerator 

timing system appliance that can be part of a general 
Medical Accelerator Control System [4]. It includes all 
elements spanning from transport to processing hardware, 
including software drivers, libraries and a generally 
usable timing system sequencer application that can be 
integrated with industrial SCADA systems and tools, see
 Fig. 2.
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Figure 2: Schematic overview of appliance.  
 

Although a specific hardware, operating system and 
programming language environment had to be selected, 
care was taken that the appliance can be integrated 
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seamlessly into different environments. Consequently an 
emphasis was put on using accepted protocols and 
technologies for supervisory control and configuration. 
Details on the technologies used for implementation are 
highlighted in section Deployment. 

Functions 
The foundation of the system is the timing specification 

for a sequence of events that can be used for a set of beam 
cycles. A run is composed from an arbitrary amount of 
timing sequences, limited only by the memory capacity 
controller CPU. Timing sequences are specified in an 
open XML format (see example below). A timing 
sequence contains a list of events with time and broadcast 
indications. The appliance caches timing sequences from 
the configuration Web server. Temporarily, sequences can 
be overridden using the SCADA interface for machine 
development and fine-tuning the timing specifications. 
When a client requests a particular beam cycle, the 
appliance resolves the mapping timing sequence and 
starts broadcasting the events in real-time according to 
their timing indications. 

 
 

<Ti mi ngSequence i d=" Exampl eCycl e"  
ver si on=" 1. 0. 0"  UUI D=" …"  st at us=" i n wor k"  
aut hor =" …"  
cr eat i on=" 2011- 02- 09T09: 22: 30. 835593Z"  …> 

 <Event TypeI dent i f i er  i d=" St ar t Cycl e"  t i me=" 0"  
spec_t i me=" 0"  i sDynami c=" f al se"  r t =" t r ue"  
nonr t =" t r ue"  acknowl edge=" f al se"  i ndex=" 0"  
absol ut e_t i me=" 0"  i s_pr i mar y=" t r ue"  / > 

 … 
 <Event TypeI dent i f i er  i d=" St ar t Accel er at i on"  

t i me=" 305000"  spec_t i me=" 310000"  
r el at ed_event =" 10"  i sDynami c=" f al se"  
r t =" t r ue"  nonr t =" t r ue"  acknowl edge=" f al se"  
i ndex=" 12"  absol ut e_t i me=" 577242"  
i s_pr i mar y=" t r ue"  / > 

… 
 <Event TypeI dent i f i er  i d=" EndCycl e"  

t i me=" 479000"  spec_t i me=" 479000"  
r el at ed_event =" 26"  i sDynami c=" f al se"  
r t =" t r ue"  nonr t =" t r ue"  acknowl edge=" f al se"  
i ndex=" 27"  absol ut e_t i me=" 3000744"  
i s_pr i mar y=" t r ue"  / > 

</ Ti mi ngSequence> 
 

Code 1: Example XML timing sequence.  

Events are freely specified as human readable names. 
Up to 250 different user-defined events can be specified 
without code changes such that the system can be easily 
configured to use in different accelerators. The same 
event can be specified multiple times in a single timing 
sequence. The system is designed for timing sequences 
with durations up to 1024 minutes and up to 512 events 
per timing sequence. However, these limits may be 
changed at deployment time. Two hard assigned events 
are always present in every timing sequence, one that 
indicates the start and one that indicates the end of the 
cycle. Timing events in a sequence must at least be spaced 
by 1 usec. A single timing sequence can be assigned to 
multiple different accelerator cycles to reduce the overall 
amount of required timing sequences. Assignment of 
timing sequences to cycles is based on a selection of 
beam characteristics such as particle type, energy, 

extraction duration, beam size, target beamline and other 
possible cycle parameters. Each event is tagged with a 
timestamp at generation time that can be used to correlate 
data at event receivers. A particular heartbeat event is 
broadcast at a configurable, regular interval, for instance 
at 10 Hz. The start of timing sequence generation can be 
configured with a negative offset with respect to the 
heartbeat, such that the regularly broadcast heartbeat 
events occur always at the same time within a timing 
sequence. This feature serves usually the synchronization 
between a regularly pulsed injector and the synchrotron. 
Additional local reference clocks are available as 
firmware plugin-components for the event receiver cards. 
These highly precise reference clocks can be phase 
corrected with respect to the start of a cycle. Examples are 
provisioning of a 10 MHz clock for backplane 
synchronization, 200 kHz as clock for a low-level RF 
system or 100 MHz for a set of synchronously working 
digital signal processors. 

The user can enqueue any pre-defined event 
asynchronously into an active run by indicating a relative 
time delay with respect to another event. The timing 
system will then include the user event in the next cycle 
and distribute it as part of the pre-defined timing 
sequence. This feature lets automated procedures easily 
insert events to trigger measurements at precise points in 
time dynamically. 

Timing sequences are pre-defined in released 
configurations that are kept on a Web server. Upon startup 
of the main timing system generator, the system 
determines if the latest released set of software and timing 
sequences is locally cached and updates its configuration 
if needed. A user can download additional timing 
sequences at any time into the timing sequence and define 
to which beam cycles the newly provided sequence 
matches. 

The system has four modes of operation: in service 
mode, the software and firmware can be updated and 
system tests can be performed. In machine physics mode 
the system can be used to perform runs and play timing 
sequences, which are not marked for clinical or quality 
assurance use. In this mode, the user can freely download 
new timing sequences, change and add associations of 
timing sequences to beam cycles. In quality assurance 
mode any modification of the pre-loaded, released 
configuration of timing sequences and mapping of 
sequences to cycles is unchangeable. In clinical mode, the 
same constraints as for quality assurance mode apply and 
only requests to play cycles that are marked for clinical 
mode are accepted. 

While a timing sequence is played out, the system 
already accepts a request for a next sequence, such that 
fully pipelined operation without dead-time between 
cycles can be achieved. The client can choose if the next 
timing sequence starts as soon as the current sequence 
ends or if the system should wait for an additional start 
request. Once a sequence of events is generated, it can be 
aborted or a request to fast-forward to a specific timing 
event in the sequence is possible. The latter function 
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permits operators to stop a running timing sequence, by 
ensuring that the accelerator completes the cycle in a 
well-defined manner. 

One physical system implements five virtual timing 
systems, called timing execution slots that can be 
operated concurrently [5]. A client requests a timing 
system slot with the request to start a run. Consequently, 
the frontend controllers that will eventually receive events 
are configured to work with a particular timing slot before 
the run is started. This functionality permits to perform 
multiple tasks such as beam commissioning, hardware 
commissioning, software development or testing of 
medical frontend systems concurrently without the need 
to purchase and re-wire multiple timing systems. 

Real-time distribution of events from generator to 
receivers is unidirectional broadcast via an optical fanout. 
Message integrity is verified by CRC16 checking at the 
receiver and the client-side software moves to failed state 
if an error is detected. Frontend controllers can, however, 
acknowledge event reception to the generator via TCP/IP 
messages over the control system’s Ethernet 
infrastructure. If acknowledgements are not received 
within a deadline, the virtual timing system moves to 
failed state. The design foresees the extension to postpone 
cycle execution until the event is acknowledgement by a 
configured number of front-end controller applications. In 
addition, the XML format permits defining the emission 
of events with GPS timestamp at 100 nsec precision also 
via a non-real time publisher/subscriber mechanism over 
Ethernet. Such, user interface applications can easily 
display and correlate data that have been acquired as 
result of event reception in front-end controllers. 

The timing system scales to several thousands of event 
receivers since the broadcast network can be built from 
multiple fanout stages. A single level fanout configuration 
accommodates 100 possible event receivers. For 
MedAustron, only 30 frontend controllers with real-time 
event reception capability were required. 

Performance 
The real-time performance of the timing system has been 
matched to the PIMMS class of particle accelerators, but 
is suitable for a variety of different accelerators. At an 
injection energy of 7 MeV the revolution time in the 
synchrotron is 2 sec. At highest extraction energy at 800 
MeV the revolution time is 0.1 sec. Timing events are 
distributed to destinations in real-time such that two 
devices receive the same event within a time window of 
less than 1 sec. In addition, devices that do not have 
processing capabilities, such as selected power converters 
or oscilloscopes, can receive signals corresponding to 
timing events as electrical or optical pulses directly via 
front-panel connections. This functionality allows high-
precision synchronization of two event receivers down to 
10 nanoseconds as shown in the figure below. The total 
latency from event emission to event response generation 
at the receiver side is 200 nsec + 5 nsec/m fiber, 
effectively indicating to the user that the absolute 
timestamp of an event is close to the time at which an 

action occurs in the front-end controller. The constant 
latency between event distribution and receiver-side 
response generation is, however, not an issue since all 
events, including the start of a cycle is shifted by this 
constant time. On the receiver, event identifier, cycle 
identifier, timing slot, run number and a 100 nsec GPS 
timestamp of event emission time are made available to 
applications via a software API, see Fig. 3.  
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Figure 3:  High-precision  synchronization   of  beamline 
elements.  

For simple development setups it is possible to emulate 
the presence of a complete timing system with a software 
application in a front-end controller that hosts a timing 
receiver card. It permits to run a locally loaded timing 
sequence and exercise the behaviour of applications and 
hardware devices that require event triggering without the 
need for the entire control system or the physical presence 
of the main timing system generator system. Generation 
of electrical and optical pulses on the front-panel outputs 
and on the front-end controller bus backplane can also be 
directly requested via calls to the software API. This 
function permits testing the most basic application and 
hardware functions during development time without the 
need for timing sequences and defined events. 

DEPLOYMENT 
The deployed timing system is composed from a 

Symmetrikom SyncServer S350 reference clock, an 
OCXO 10 MHz to 100 MHz frequency multiplier, a 
National Instruments 3U 8 slot PXIe crate with PXIe 
CPU, an MRF [6] PXIe EVG card, a 6U cPCI crate and 6 
MRF optical fanout cards. The timing system broadcast 
network uses standard Gigabit Ethernet OM3 fiber-pairs 
and OM1 single fibers are used for optical triggers from 
timing receiver cards to power converters. The system is 
installed in one 19” rack.  

The application software is written in Labview on top 
of the 64 bit MS Windows 7 operating system. The MRF 
EVG 300 card features a Virtex 5 FPGA, which is 
programmed in VHDL. The timing system generator 
application is based on a common Labview framework 
that can also be used to program frontend controllers on 
PXI and PXIe platforms using Labview and Labview/RT. 
Currently, non PXI/PXIe FECs are integrated via timing 
receiver card front-panel TTL pulses and a low-latency 
datagram over the PXIe CPU’s serial output. However, 
making receiver libraries available on a different 
operating system is a mere implementation effort, since 
the design is well-documented. 

Configuration, state and mode transition changes and 
monitoring are performed via the OPC protocol. Timing 
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events can also be published along with run number, cycle 
number, timing slot number and GPS timestamp via a 
proprietary, documented TCP/IP application layer 
protocol to a publisher/subscriber system. Publishing and 
subscription API libraries exist for C, C++, Labview and 
C#. Application and system log messages are distributed 
to a log4net based log server via the originally log4j 
developed UDP based log protocol. Log message pre-
filtering and selection of log messages to file or network 
are configurable in the appliance to keep log message 
traffic under control during operation. Timing sequences, 
framework, driver and application software releases are 
picked autonomously from a Web server via the HTTP 
protocol. Graphical user interfaces for testing exist as 
Labview panels and ready-to-use operation panels exist 
for the SIEMENS/ETM WinCC OA SCADA tool. If the 
latter tool is used, data logging, alarming and on-the-fly 
modification of timing sequences for machine 
development are available in WinCC OA as scripts and 
datapoint element configurations, see Fig. 4. 

 

 

Figure 4: Appliance as delivered and deployed. 

FUTURE WORK 
The current implementation includes the possibility 

require acknowledgements for individual timing events. If 
the indicated number of acknowledgements is not 
received by the timing system generator within a 
specified timeout, generation will be stopped by the 
system. The implementation’s focus was on the 
functionality rather than on performance. The 

acknowledgement mechanism is therefore currently 
available over TCP/IP only. Particular application may, 
however, require low-latency acknowledgements within 
microseconds and the possibility to pause timing 
sequence generation rather than aborting it. The system 
design has been foreseen to accommodate those 
additional features that can be implemented if the arises. 
In addition, the design foresees to pause cycle execution 
rather than moving to failed until acknowledgements have 
been collected. Supervisory control protocol is currently 
implemented via the National Instruments OPC/Shared 
Variable engine. It is suggested to upgrade the software to 
Labview 2012 and switching to OPC/UA protocol to 
improve performance and stability. 

CONCLUSIONS 
Based on the PIMMS design, an accelerator main 

timing system for a mid-size class of synchrotron 
accelerators requiring large amounts of different beam 
cycles, no dead-times between cycles and a large amount 
of flexibility without a need to intervene at hardware or 
firmware level has been devised. Test operation has 
shown good performance and robustness. We have 
therefore decided to make the CERN IP and design 
available through an integration partner, Cosylab 
(Ljubljana, Slovenia). The system is based on the MRF 
timing system transport layer. Current implementations by 
Cosylab are available for PXI and PXIe systems with 
Labview software support for front-end controller 
applications. The design is, however, flexible and timing 
receiver cards for other platforms such as VME exist such 
that accommodating different hardware and operating 
system platforms are a mere implementation task. 
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