
DESIGNING AND IMPLEMENTING LABVIEW SOLUTIONS
FOR REUSE*

M Flegel, G Larkin, L Lagin, B Demaret, LLNL, Livermore, CA 94550, USA

Abstract
Many machines have a lot in common – they drive

motors, take pictures, generate signals, toggle switches,
and observe and measure effects. In a research
environment that creates new machines and expects them
to perform for a production assembly line, it is important
to meet both schedule and quality. NIF has developed a
LabVIEW layered architecture of Support, general
Frameworks, Controllers, Devices, and User Interface
Frameworks. This architecture provides a tested and
qualified framework of software that allows us to focus
on developing and testing the external interfaces
(hardware and user) of each machine.

THE NATIONAL IGNITION FACILITY
The NIF is the largest and most energetic laser system

in the world, capable of creating temperatures and
pressures normally constrained to stars, giant planets, and
nuclear weapons with a goal of achieving controlled
inertial confinement fusion in a laboratory setting. In
order to accomplish this, the NIF uses a significant
number of near perfect optics to deliver the laser energy,
and a near perfect capsule used to contain the fuel.

AUXILIARY PRODUCTION FACILITIES
Optics Mitigation Facility (OMF)

In order to achieve “near perfection” with the optics,
the NIF built the “Optics Mitigation Facility” in 2010.
This system guides an operator through the inspection
flaws, examines and characterizes them with a Fetura
microscopes and Basler cameras, and decides whether
they can be mitigated. Mitigations as small as 360
microns are applied using a real-time motion chassis with
a real-time laser light delivery system.

The OMF was implemented in LabVIEW and was the
focus of the highly respected case study – “Using
LabVIEW in a Critical Laser Application for the National
Ignition Facility at Lawrence Livermore National
Laboratory”[1] – co-written between LLNL and National
Instruments (NI). From the success of the OMF, the NIF
undertook to commission four more optics processing
systems, three target processing systems, and one line
replaceable unit (LRU) transporter.

Optics Processing Systems
Grated Debris Shield (GDS) Etch drives an optic

across a set of meniscus processing heads that chemically
treats and rinses a photoresist coated optic to develop and
etch a grating pattern into the glass substrate of the optic.

Photoresist (PR) & SolGel Meniscus Coaters, similar
to GDS Etch, apply a thin layer of a chemical to one side
of an optic. Given the different fluid behaviours the optic
clearance relative to the meniscus process head is much
smaller (0.5mm vs. 2mm) than GDS Etch.

Flaw Inspection and Characterization System
(FICS) scans an optic for flaws (IMS-LS and FADLiB)
and examine the flaws in detail (PSDI). The metrology
information is used to determine how to mitigate the flaw
with a CO2 laser drill on OMF, with a diamond drill on a
Crystal Mitigation System, or chemically removing the
flaw in the coating (with FICS’ Flaw Removal Tool
(FLRT)).

Target Processing Systems
CFTA Cleaning chemically cleans the surface of a

Capsule Fill Tube Assembly (CFTA) using a fine spray
nozzle[2].

CFTA Mapping takes over 350 confocal images of a
capsule surface to characterize the capsule’s surface
features[3][4][5].

CFTA Leaktest monitors temperature, pressure, and
leak rate sensors over time for a capsule under test to
automatically determine the integrity of the capsule.

Transporter Systems
ARC PV Transport & Handling transports, installs

and removes Advanced Radiographic Capability (ARC)
LRUs weighing around one ton in the NIF’s Parabola
Vessel (PV) with clearances as small as 3 mm.

FRAMEWORK
Motivation

The OMF set the stage for the viability of advanced
application development in LabVIEW. It took advantage
of:

 Prebuilt drivers for hardware and instruments;
 Highly customizable drag-and-drop user interfaces;
 Easy, rapid prototyping for testing and demonstrating

new features and concepts;
 Built-in vision and analysis routines;
 Easy manipulation for large data sets with built-in

array functionality.
Software engineering best practices including

requirements analysis, design, test, and change
management were used; and the system was delivered in
15 months, roughly one-third of the estimate to develop
using Java or C++.

Observing that OMF’s success was based on re-using
LabVIEW’s built-in routines and applying software
engineering best practices, a reusable layered architecture
of additional abstractions and components was designed

*This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. #LLNL-ABS-632634,

LLNL-CONF-644308

TUCOCB06 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

960C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

and used to build the next eight systems, with LabVIEW.
This approach was introduced at NIWeek 2011[6] (a
major international conference), applied to the eight

systems described above, and summarized in the
configurations and reuse metrics listed in Table 1.

Table 1: System Configurations and Reuse Factors

System
Release

Common
Release

System Common Total Reuse

Classes VIs Classes VIs Classes VIs Classes VIs

Common 186 1294

CFTA
Mapping 1.1.0 1.0.7

RC002 45 448 86 650 131 1098 66% 59%

CFTA
Cleaning 1.1.0 1.0.3

RC002 17 101 66 510 83 611 80% 83%

GDS Etch 2.0.0 1.0.6
RC004 60 628 83 703 143 1331 58% 53%

FICS 2.0.2 1.0.4
RC003 69 378 104 788 173 1166 60% 68%

CFTA
Leaktest 1.1.0 1.0.6

RC003 69 378 104 788 173 1166 60% 68%

PR Coater 2.0.0 1.0.6
RC004 25 216 58 436 83 652 70% 67%

SolGel
Coater 2.0.0 1.0.6

RC004 57 322 104 788 161 1110 65% 71%

TH ARC 1.0.0 1.0.7
RC002 41 225 75 658 116 883 65% 75%

Average 47 337 85 665 133 1002 64% 66%

There are three major components to the architecture:
 Layering fosters efficient reuse of code[7];
 Abstractions codify regularly occurring patterns

such as actors, hardware abstractions, recipes, user
interfaces, applications (that pull everything
together), etc.;

 Components codify regularly occurring capabilities
such as configuration, logging, mail, communication,
database, device models (e.g. actuators, motors,
regulators, cameras, sensors), etc.

Layering
Layers provide a narrow and well-defined interface to

layers below it [7], with each layer defining a
progressively more abstract machine and permits
retargeting[8]. There are seven layers to the architecture
(see Figure 1) consisting of:

1. Support – basic classes and utilities;
2. Frameworks – basic abstractions and components;
3. Framework Services – generalized services;
4. Controllers – interfaces to external systems;
5. Devices – device behaviour and commonly used

devices;
6. Application Support – glue that holds the entire

system together; and

7. Systems – the unique requirements of each
application.

Figure 1: Layering.

Abstractions
Abstractions describe recurring themes, but lack the

concrete details to stand on their own. There three key
abstractions at the centre of the Framework.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB06

Software Technology Evolution

ISBN 978-3-95450-139-7

961 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Actors represent resources that have state. The
resource can be a single device or a supervised collection
of devices; it can change value and/or state, and publish
this to interested subscribers. Figure 2 is a high level class
diagram of the actor design.

Figure 2: Actor Class Diagram

Hardware Abstractions insulate device

implementations from the actual hardware: the Device
models the behaviour of the hardware; the Controller
implements the concrete interface to the hardware; and
the Channel adapts the Device to the Controller. The
same Device implementation can be used with different
Controllers (e.g., Aerotech, Newport, Wago, etc.). Figure
3 is a high level class diagram of the hardware abstraction
design.

Figure 3: Hardware Abstraction Class Diagram.

Application and User Interfaces encapsulate the rules

for building the program and allowing the program to
interact with operators, testers, and developers. With a
graphical user interface (GUI) Framework, user interfaces
implemented to provide Device control (see above) can
be reused within the same application as well as in other
applications. Figure 4 is a high level class diagram of the
application and GUI design.

Figure 4: Application and GUI Class Diagram.

EXPERIENCES
What Comments May Be Encountered Along the
Way

LabVIEW applications are ‘sub-standard’ and are
unstable for production. LabVIEW is a programming
language. Good software engineering practices, a good
design methodology, and trained engineers are what make
quality systems that meet DOE Order 414.1D[9].

Why is it taking so long? Early systems are on the
hook for creating the Framework. Once the base
Framework is in place, migration to a more agile
development process allows the delivery of manual
control of the machine, followed incrementally by more
complex solutions to meet needs and expectations.

You implemented what I asked for, but that’s not
what I want! Customers often don’t know what they
want until they see what they are getting. Working with
customers to develop the user interfaces helps to
understand the requirements and expectations, and helps
the customers buy into the system being built.

Individuals had their own software ‘toolbox’.
Standalone developers tend to have their own collections
of software tools that they upgrade and fix each time they
are reused, but the changes are rarely applied to previous
systems. Usually only the developer understands their
own tools. A common shared and configured toolbox
allows these tools to be tracked and understood amongst
many developers, and many systems.

How To Do This
“good engineering practices”. A team trained in

software engineering skills – project planning,
requirements analysis, object oriented design and
programming, code reviews, independent test,
configuration management (Jira change
management[10][11] and AccuRev source code
control[12]) – is essential. These skills are used to create
plans, estimates, and schedules that are tracked and
communicated with management and customers. The
focus of the development effort should be on the systems,
with reuse in mind. Items identified for reuse are
refactored into the Common Framework when needed
and/or mature for reuse.

Track How It’s Going
Collecting metrics is important to measure the effects.

Table 2 illustrates our metrics order of the earliest (CFTA
Mapping) to most recent (TH ARC) systems, and
correlates the effort (in days) with the artefacts of the
systems – number of classes and control points (devices
and controllers) – required to implement each system.

.

TUCOCB06 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

962C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

Table 2: Development Metrics

 Effort
Total

Effort
per

Class

Effort
per

Control
Point

Control
Points

1
CFTA

Mapping 585 4.1 45.0 13

2
CFTA

Cleaning 199 2.4 8.3 24

3
GDS
Etch 486 3.0 5.3 91

4 FICS2 321 2.5 14.6 22

5
CFTA

Leaktest 98 1.2 9.8 10

6
PR

Coater 109 0.6 0.9 119

7
SolGel
Coater 109 0.6 0.9 123

8 TH ARC 249 2.1 2.1 120
As the systems are built, each contributes something to

the Framework. Earlier systems are taxed with more
significant contributions than later systems. At first,
customers were uneasy as they felt their systems were
being unfairly taxed and taking significantly longer than
they expected.

 Figure 5: Development Trends.
However, they were pleased with the quality – “These

are some of the most stable systems we have seen.”
Customers of later systems were also pleased that “the
time required to generate a product of the same
complexity [and quality] was significantly reduced”.
National Instruments is taking a keen interest in this
process and the results.

WHAT NEXT
The metrics indicate that the approach is successful.

The next steps are to:
Continually Improve – more agile development,

subdivide the Framework into packages, encourage
developers to enhance their skills with training and
certification.

Rapid Prototyping – develop a process that allows
prototypes to be deployed that are needed for proof of
concepts for machines and machine processes.

REFERENCES
[1] G Larkin, “Using LabVIEW in a Critical Laser

Application for the National Ignition Facility at
Lawrence Livermore National Laboratory”, National
Instruments Case Studies, c2010.

[2] SH Baxamusa, “A Solvent Cleaning Process for the
Outer Surfaces of Plastic ICF Capsules”, 20th Target
Fabrication Meeting, 2012.

[3] NA Antipa, “Automated ICF Capsule
Characterization Using Confocal Surface
Profilometry”, Fusion Science and Technology 63
(2), 151-159, March 2013.

[4] LM Kegelmeyer, “3D Surface Mapping of Capsule
Fill-Tube Assemblies used in Laser-Driven Fusion
Targets”, European Society for Precision Engineering
and Nanotechnology, February 2011.

[5] NA Antipa, “The Capsule-Fill-Tube-Assembly
Mapping System”, 20th Target Fabrication Meeting,
2012.

[6] M Flegel and G Larkin, “Mitigation of Optic Flaws
for NIF Laser”, NIWeek 2011 – Big Physics
Symposium, August 2011.

[7] Phillipe Kruchten, Christopher J. Thompson, “An
object-oriented, distributed architecture for large-
scale Ada systems”, TRI-Ada '94 Proceedings of the
conference on TRI-Ada '94, 262-271, 1994.

[8] John P. Woodruff, “The National Ignition Facility
Integrated Computer Control System”, Presented at
Stanford Linear Accelerator Centre, April 2000.

[9] US Department of Energy, “DOE 414.1D, Quality
Assurance”, April 2011.

[10] Attlassian, “Jira”.
[11] J Fisher, "Utilizing Atlassian JIRA for Large-Scale

Software Development Management", 14th
International Conference on Accelerator & Large
Experimental Physics Control Systems (ICALEPCS),
October 2013.

[12] AccuRev, “AccuRev”.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB06

Software Technology Evolution

ISBN 978-3-95450-139-7

963 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

