
ITER CONTRIBUTION TO CONTROL SYSTEM STUDIO (CSS)
DEVELOPMENT EFFORT

N. Utzel, L. Abadie, F. Di Maio, J.Y. Journeaux, A. Wallander, I. Yonekawa,
ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance, France

F. Arnaud, G. Darcourt, D. Dequidt, Sopra Group, 13791, Aix-en-Provence cedex 3, France

Abstract
In 2010, Control System Studio (CSS) [1] was chosen

for CODAC - the central control system of ITER [2] - as
the development and runtime integrated environment for
local control systems. It became quickly necessary to
contribute to CSS development effort - after all, CODAC
team wants to be sure that the tools that are being used by
the seven ITER members all over the world continue to
be available and to be improved. In order to integrate CSS
main components in its framework [3], CODAC team
needed first to adapt them to its standard platform based
on Linux 64-bits and PostgreSQL database. Then, user
feedback started to emerge as well as the need for an
industrial symbol library to represent pump, valve or
electrical breaker states on the operator interface and the
requirement to automatically send an email when a new
alarm is raised. It also soon became important for
CODAC team to be able to publish its contributions
quickly and to adapt its own infrastructure for that. This
paper describes ITER increasing contribution to the CSS
development effort and the future plans to address factory
and site acceptance tests of the local control systems.

INTRODUCTION
The ITER project aims to demonstrate the feasibility of

commercial production of fusion energy. It is an
international project that involves seven members (China,
Europe, India, Japan, Korea, Russia and USA) who
provide all plant systems (magnet, vacuum vessel,
divertor, cryostat, diagnostics…) in-kind through so
called procurement arrangements. The majority of them
include local control systems that need to be integrated
into CODAC – the central control system of ITER.

To mitigate the risks during integration, a major effort
has been invested to provide not only guidelines and
standards applicable to all local control systems but also a
framework that implements these standards and
guarantees that the local control systems can be integrated
into the central one.

This framework is based on EPICS [4] – Experimental
Physics and Industrial Control System – which is a
client/server architecture and a set of tools for building
scalable control systems with:

 Distributed real-time Process Variable (PV) database,
 Software Bus – Channel Access – that allows the

clients (requestors) to do operations such as Search,
Get, Put or Add Event (add monitor) and the servers
(providers) to only send data to the client when it has
changed for instance in the case of a monitor request.

CODAC control system framework also includes some
EPICS extensions. Control System Studio is one of its
key components providing common services such as the
operator interface, the alarm system, engineering archival
and the electronic logbook necessary to monitor and
operate both local and central control systems.

SCOPE AND OBJECTIVES
Control System Studio is an Eclipse-based collection of

tools to monitor and operate large scale control systems,
such as those in the accelerator and fusion community. It
is the result of a collaboration amongst many laboratories
and universities.

This collection of tools consists of more than 350 core
and application plugins and nearly half of them are
integrated into the CODAC control system framework to
provide common services:

 Operator Interface (OPI) that connects to the local
control system, animates graphical widgets
according to an EPICS PV value, alarm
status/severity and connection/read-write status,
shows PV’s range and alarm limits and allows the
operator to interact with the process by providing
input data and sending commands,

 Alarm System that monitors alarms in the control
system and provides essential support to the operator
by warning him of situations that need his attention,
showing guidance, allowing him to open dedicated
displays, execute commands and acknowledge
alarms,

 Engineering Archival that monitors and archives
EPICS PV values on a dedicated storage and
provides a graphical user interface for displaying live
and historic data in a plot, making some
computations, adding annotations and exporting
values into different file formats such as Excel
spread sheet or Matlab,

 Electronic Logbook that registers events which have
been manually or automatically generated during
operation, to keep track of problems, human
decisions or actions which were taken during the
course of the activity and which may have had an
impact on the outcome of the activity.

The main objectives of the integration of CSS in the
CODAC framework were firstly technical, to evaluate,
select and quickly adapt the tools to their environment.
Secondly it was important to adopt a strategy of
continuous improvement of these common services by
joining the Control System Studio Collaboration.

TUMIB08 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

540C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

A DISTRIBUTED ARCHITECTURE
CODAC services common to all ITER plant systems,

including the operator interface, the alarm system, the
engineering archival and the electronic logbook, are
distributed over many CODAC servers and terminals
which are installed in the ITER control room and
CODAC server room.

These services interface with approximately 220 local
control systems, each of which includes a set of tightly
coupled slow and/or fast controllers, with one and only
one Plant System Host, which implements plant-specific
and generic functions using EPICS PVs.

In order to facilitate integration, the local control
systems are grouped into roughly twenty control groups:
buildings, water cooling, cryogenic, fuelling, diagnostics,
etc. To reflect the functional breakdown, CODAC
services are distributed over the control groups with one
alarm server and one archive engine per control group.

Finally, CODAC services are present on the “Central
supervision, monitoring and data handling” layer with the
alarm and archive central databases, the electronic
logbook and the operator terminals.

Actuators and Sensors

CODAC Server

CODAC services
and applications

CODAC Server

CODAC services

Central supervision, monitoring and data
handling

Fast
Controller

CODAC Server

Applications

CODAC Server
 Scientific
Archiving

Plant System I&C

ITER Control Group
CBS1

TCN

CODAC HPC
Plasma
Control

TCN

Operator
Interface

Outside POZ

SDN

PON

PON

Fast
Controller

COTS
Intelligent

Device

Slow
Controller

Slow
Controller

TCN
AVN

DAN

DAN

Plant
System

Host

CINDAN

Slow
Controllers

IOC

CAS CAC

Slow
Controllers

IOC

CAS CAC

Slow
Controllers

IOC

CAS CAC

Channel Access Gateway
ca-gateway-CBS1

CBS1 Archive Engine CBS1 Alarm Server

Alarm
RDB

Fast
Controllers

IOC

CAS CAC

Fast
Controllers

IOC

CAS CAC

Fast
Controllers

IOC

CAS CAC Fast
Controllers

IOC

CAS CAC

Fast
Controllers

IOC

CAS CAC

Fast
Controllers

IOC

CAS CAC

Enginering Archive
RDB

Electronic
Logbook

Figure 1: CODAC Services Distributed Architecture showing globally how CSS main components are distributed over
the entire architecture.

The advantage of distributing CSS components
according to the functional breakdown adopted by
CODAC is that this will allow the integration and
operation of the local control systems over a long period,
privileging scalability and modularity.

This distributed architecture has already been setup in a
production environment and one local control system has
been successfully integrated for the site electrical power
distribution. This real use case gives us confidence in our
technical choices and shows the importance of an
integrated solution that has to be configured and deployed
over the entire distributed architecture. This also requires
the definition and enforcement of common operating

processes and procedures. With time, different versions of
the same functional component in different control groups
will have to interoperate, as well as different versions
between the central level and the control groups.

ITER CONTRIBUTION TO CSS
DEVELOPMENT EFFORT

Industrial Symbols Library
Working on the real use case, it was soon necessary to

introduce an industrial symbol library of objects such as
electrical circuit breaker, relay, pump or valve to monitor
and operate the local control systems. Based on CAD

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUMIB08

User Interfaces and Tools

ISBN 978-3-95450-139-7

541 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

symbols, a library of more than 250 industrial symbols
was setup in svg and png format and published to the CSS
source repository as a new plugin.

Some displays were also developed in a demonstration
folder to illustrate the use of these symbols.

Figure 2: CODAC Electrical Symbols Use Case
demonstrating the Industrial Symbol Library.

Subsequently, it was necessary to develop a new
graphical widget to handle these industrial symbols and
display them in their On/Off, Open/Close or 1/0 position
according to an EPICS Boolean PV value. In addition to
the symbol position update, the black and white original
image has to be redrawn in the configured On/Off color.

Figure 3: CODAC Electrical Symbol in On/Off Position.

Multistate symbols also needed to be managed even
though their use is quite limited compared to the Boolean
symbols.

This industrial symbol library and symbol widgets were
the first main ITER contribution to CSS development
effort and found a direct application in the site electrical
power distribution use case. This was also the opportunity
to collaborate on existing widgets by adding new
functions such as the image rotation and flip.

Alarm Notifier
Still working on the real use case, a request was made

to be able to send an email when important alarms were
raised by the local control system. This user requirement
was translated into the development of a new plugin,
client to the alarm system and in charge of the execution
of automated actions configured for any alarm triggers –
these actions being sending an email, an SMS or just
executing a script. This model allows any contributor to
develop his/her own automated action. ITER is in charge
of the plugin itself, the automated action API and its first
implementation - the automatic sending of an email with
alarm information.

The alarm notifier plugin receives all alarm state
transitions from PV OK to PV in alarm state – minor or

major, then to acknowledged PV (for PV configured as to
be latched), and finally to PV OK again as well as any
alarm severity changes.

Each time the automated actions configured for the
trigger PV are executed.

Figure 4: Alarm State Transitions that execute an
automated action configured for a latched alarm.

The setup of automated actions on the site electrical
power distribution system is on-going and should be
operational for October 2013. This should reduce the
number of shutdowns as the persons in charge of the
maintenance will be notified by email as soon as an
important alarm is raised and they can take the corrective
action in time.

PV Name Auto-complete
Every laboratory has its own naming convention and

ITER is no exception. But during many CSS training
sessions, help was requested for entering EPICS PV name
to minimise typing errors.

It was decided to develop a CSS core plugin for the
auto-completion and allow any contributor to implement
his/her own PV configuration database interface, ITER
being in charge of the plugin, the auto-complete API and
the history name lookup. ITER also provides EPICS
database source file parsing for the project imported in the
user workspace.

Figure 5: As the user starts to enter a PV name, the auto-
complete displays some proposals.

Alarm

OK

Acknowledged

Higher/Lower

severity or
PV OK

PV NOK

PV OK

Operator ACK

Operator un-ACK

Higher severity

Lower
severity

TUMIB08 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

542C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

Web Monitoring Interface
In addition, ITER contributed to CSS development

effort by adapting the plot tool and alarm user interface in
order for them to be run via a web-browser-equipped
device such as a PC, laptop, tablet or smart phone.

ITER Contribution Publication
As first contributions could be sometimes a bit off the

mark, ITER needed to publish as quickly and frequently
as possible in order to get feedback – this a way to learn
from each other, improve and get accepted by the
community.

This required the adaptation of CODAC development
and packaging infrastructure in order to adopt CSS
Mercurial and then the GitHub repository as the main
source repository for CSS and synchronise it with
CODAC SVN for a nightly build of the framework - the
objective being to be able to pull or push back a fix within
one day.

FUTURE WORK
During factory and site acceptance tests, the CODAC

framework will be used to connect to the local control
system to monitor and operate it, to execute sequences of
commands, record actions and events and produce reports
with runtime statistics.

This will require the integration and possibly adaptation
of another CSS service – the experiment automation
(Scan Server) which allows editing and the control of the
execution of a sequence of commands via CSS. The list of
supported commands – Set, Wait, Loop and Log – can be
extended for ITER needs via extension points.

Another additional service of interest is the alarm web
reporting tool that should help to assess the alarm system
by charting the number of alarms per day and displaying
the "top ten" alarms for a time period. Usually, it is just
one or two EPICS PVs that trigger all the alarms (see
Figure 6), so it is then easier to spot those and do
something about it.

Figure 6: Alarm Web Reporting Tool for site electrical
power distribution showing the top ten alarms.

Similarly the archive web reporting tool will provide
runtime statistics about the number and frequency of
archived samples for each local control system during
acceptance tests.

CONCLUSION
Getting involved with the open-source projects ITER is

genuinely interested in, is a win-win strategy. CODAC
primary target is to setup and distribute worldwide a
complete and robust lifetime framework with similar
functionality to any commercial SCADA - Supervisory
Control And Data Acquisition system. Its software design
is based upon the widely-used EPICS control system
toolkit and CSS set of services.

Joining the mailing list and starting “small” by
reporting and fixing integration issues rapidly became
insufficient as new requirements emerged from the first
local control system real use case. The development of
new CSS plugins for the industrial symbol library and the
execution of automated actions for important alarms
allowed ITER to get familiar with CSS’s various methods
for version control, bug tracking, patch submission,
coding conventions, and development discussions. Being
part of the CSS development effort also means that the
new plugins cannot be just “ITER specific” and need to
be flexible enough to be adapted by other laboratories via
extension points.

The next challenge for ITER is to propose tools in its
CODAC framework for factory and site acceptance tests
to automate sequences of commands, track the actions
and events, and produce reports. Once again, CSS
proposes some valuable services that will be integrated
and extended to fit ITER requirements.

The views and opinions expressed herein do not

necessarily reflect those of the ITER Organization.

ACKNOWLEDGMENT
The EPICS worldwide development community played

an important role by creating the EPICS set of tools in the
first place. Then, Control System Studio Collaboration
was an ideal place to exchange and continuously improve
CSS in a team spirit.

REFERENCES
[1] CSS Control System Home Page,

http://controlsystemstudio.github.io/
[2] A. Wallander et al, “Approaching Final Design of ITER

Control System”, ICALEPCS 2013, San Francisco,
http://jacow.org

[3] F. Di Maio et al, “CODAC Core System, the ITER
Software Distribution for I&C” – a Status Report,
ICALEPCS 2013, San Francisco, http://jacow.org

[4] EPICS Home Page, http://www.aps.anl.gov/epics/

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUMIB08

User Interfaces and Tools

ISBN 978-3-95450-139-7

543 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

