
SDD TOOLKIT: ITER CODAC PLATFORM FOR
CONFIGURATION AND DEVELOPMENT

L.Abadie, F.Di.Maio, D.Stepanov, A.Wallander,
ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance, France,

K.Bandaru, H.Deshmukh, P.Nanware, R.Patel, TCS, Mumbai, India
G. Darcourt, A.Mariage, Sopra Group, Aix-en-Provence, France,

A.Zagar, Cosylab, Slovenia

Abstract
ITER will consist of roughly 200 plant systems I&C (in

total millions of variables) delivered in kind which need
to be integrated into the ITER control infrastructure. To
integrate them in a smooth way, CODAC team releases
every year the Core Software environment which consists
of many applications. This paper focuses on the self
description data toolkit implementation, a fully home-
made ITER product. The SDD model has been designed
with Hibernate/Spring to provide required information to
generate configuration files for CODAC services such as
archiving, EPICS, alarm, SDN, basic HMIs, etc. Users
enter their configuration data via GUIs based on web
application and Eclipse. Snapshots of I&C projects can be
dumped to XML. Different levels of validation
corresponding to various stages of development have
been implemented: it enables during integration,
verification that I&C projects are compliant with our
standards. The development of I&C projects continues
with Maven utilities. In 2012, a new Eclipse perspective
has been developed to allow user to develop codes, to
start their projects, to develop new HMIs, to retrofit their
data in SDD database and to checkout/commit from/to
SVN.

INTRODUCTION
SDD toolkit has been developed to promote PCDH

standards [1] as CODAC will have to integrate around
200 systems produced by different institutes and
companies around the world. Standardization being a key
criterion for success, it is important to clearly set a
development framework for I&C designers to minimize
heterogeneous code and implementation. We also try to
automate as much as possible code generation to avoid
human errors. The toolkit is a home-made product and is
part of Core System infrastructure [2]. It is based on a
relational database and uses modern technology such as
Eclipse [3], Hibernate [4] and Spring [5]. The toolkit
consists of many tools which will be described in the next
sections.

CHALLENGES
In this section, we describe the main challenges that

SDD is trying to address.

EPICS and CSS
CODAC uses EPICS [6] as a conventional control

system framework. EPICS is based on records (or
variables) to describe the system. A record has a type (e.g.
ai – analog input) and a set of static fields. We expect to
have millions of EPICS variables. Each variable requires
a unique name. Moreover EPICS variables can be viewed
as a graph where variables can be linked with each other
(aka as record plumbing). EPICS community has
developed CSS [7], which consists of a set of applications
such as HMIs framework development, alarm handling
and archiving system.

I/O Modules
PCDH recommends a set of I/O modules to be used.

Each I/O module requires an EPICS device support which
allows controlling the board via EPICS.

SDN
Fusion devices require a fast feedback control loop

with plasma control. The data is getting transported on
another network called SDN (Synchronous Data
Network). It is based on UDP multicast and uses the
concept of SDN topics for data exchange. A SDN topic is
a C-structure which has two parts (metadata and data).
Then programs can subscribed and/or publish SDN
topics.

Validation
As we will receive systems developed by different

people, it is important that we validate the project.
Checking that the deliverable is compatible with CODAC
standards is essential to a smooth integration, e.g. the
variable is unique, links between EPICS variables are
valid, SDN topics are published once.

SDD MODEL
The main purpose of the model is to describe the

required information so that we can generate
configuration files for the different services and make
necessary validations.
Figure 1 shows the architecture layout of the SDD toolkit.
Each component will be described in the next subsections.

TUPPC003 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

550C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

Figure 1: SDD toolkit architecture.

Database Centric
The core component of the toolkit is the database and

its library access. The schema uses a relationship model
and describes necessary information to generate
configuration files.

The main key points of the database schema are the
following two aspects:

- Static data which consists of metadata used for
validation: e.g. declaration of EPICS record type
and set of fields, metadata required to describe
alarm, list of I/O modules and its description of
EPICS interface.

- Concept of variables: a variable has a type which
can be EPICS, SDN, etc. It has a unique name.
Depending on the type, we can impose or not a
structure.

We use PostregSQL [8] to implement the database
level.

Three Different Views
The SDD model uses three views to describe the

system as shown in Figure 2.
The global container is called the I&C project. It has a

name and a version. An I&C project has three views:
- Physical which describes the list of components,

signals, controllers and I/O modules and location
inside cubicles/chassis

- Functional which describes the list of variables
and associated I&C functions

- Control which describes the relationship between
variables and controllers.

Figure 2: The different views of the SDD model.

Data Access
We have implemented a data access library to interact

with SDD database, using Hibernate as ORM (Object

relational model) framework, Spring to manage
transactions.

We also developed mass import/export mechanism
based on Excel.

The data access offers the necessary methods to save
and query data. Due to the amount of data to be saved and
loaded, we developed the toolkit using lazy saving and
loading.

We implemented three levels of validations:
- Minimum, to warrantee that the data is consistent

(e.g. unique name of variables)
- Medium, all information to generate configuration

files have been filled
- Full validation, the deliverable is complete and

compliant with CODAC standards.

SDD migration
As we have more and more users, we need to provide a

smooth upgrade path. Whenever, there is a SDD DB
schema change, we provide a migration script to allow
migrating data from one version of SDD to another one.

SDD Liefecycle
Another key point of the SDD toolkit is the duality

local versus central SDD DB. It is important to highlight
that all deliverables need to be submitted to the central
DB as shown in Figure 3. Next section explains which
tool is responsible for communication between central
and local databases. By submitting the deliverables to the
SDD central DB, it allows monitoring of the progress of
the deliverables.

Figure 3: SDD Lifecycle.

COMPONENTS
SDD Webapp

We developed a web application to allow users to edit
and to browse SDD information as shown in Fig. 4. It

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC003

Data Management and Processing

ISBN 978-3-95450-139-7

551 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

uses Prime Faces [9] as a widget framework and Tomcat
as servlet container.

The main advantage of web applications is it does not
require any software to install, just a web browser.

Figure 4: SDD web application: variable view.

SDD Editor
Core system is based on RHEL. Allowing an efficient

framework for development is important. We developed
SDD Editor (Fig. 5), based on Eclipse RCP technology.
It is plug-in-based architecture – one can integrate third-
party plug-in - so it is very modular. From CODAC Core
system v4, we start to integrate the SNL plugin,
developed by the CSS community, it allows developing
SNL code. We also included the BOY editor to allow
HMI development and eclipse CDT for developing
C/C++ code.

Figure 5: Example of SDD editor panel.

SDD Translator and Parser
Another key component of SDD toolkit is the translator

which uses data in the database to generate configuration
files for the different services. It is based on JAVA and
uses Velocity [10] to define the templates for the different
platforms (EPICS, alarm, archive, etc).

Figure 6: SDD generated files.

Using the information stored in SDD, the translator
generates the following configuration files (Fig. 6):

- EPICS database files, start-up files
- Archive configuration
- Alarm configuration
- A set of HMI screens
- PLC datablocks (interfaces) and a VAT table for

STEP 7 PLCs.
- SDN configuration files (SDN Topic headers, SDN

topic multicast mapping, SDN configuration file
for the monitoring node).

We also developed a parser, to retrofit EPICS files. It uses
ANTLR [11] as a parser. It is a useful tool as it minimizes
the development cycle: when debugging a project, it is
often faster to modify the generated files and then
integrate them in SDD DB.

Maven Editor
Maven framework is used in Core System for building

and running the different services. The main advantage of
maven is to hide the complexity of building heteregenous
services (e.g. Makefile of SDN application is different as
writing maven of EPICS application).

Also maven is used to enforce a consistent project
structure and minimizing editing of makefiles.

In Core system v4, we developed a new Eclipse plug-in
called maven editor (Fig. 7) and integrated it with SDD
editor.

As a consequence, one can create and edit a project,
generate configuration file, develop codes and then start,
stop services.

Figure 7: Maven Editor view.

TUPPC003 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

552C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

Integration with SVN [12] has also been made. In recent
version of Core system one can commit his/her project,
check-out from SVN projects.

SDD-sync
The final component we describe is sdd-sync. SDD-

sync has two main roles:
1) Create a snapshot of your project into XML
2) Communicate with Central SDD.

Sdd-sync is using JAXB [13] to parse XML files. We
always encourage developers to submit their I&C projects
to the central SDD DB, it allows sharing of information
and structure definition. Also one can import/export other
projects and integrate it in his/her local system as one can
see in Fig. 8 and Fig. 9.

Figure 8: Export to XML and Send to central features.

Figure 9: Import XML projects.

CONCLUSIONS
The development of SDD toolkit started three years ago

from scratch. Now the SDD toolkit is becoming more
stable and a mature product.

Current developments are now mainly focused on the
support for remote execution especially when dealing
with fast controllers. We are currently working on
improving the validations based on users’ feedback and
starting to improve the central SDD DB to be ready to
receive all the different systems and merge them.

The views and opinions expressed herein do not
necessarily reflect those of the ITER Organization.

REFERENCES
[1] CODAC Plant Control Design Handbook
 http://www.iter.org/org/team/chd/cid/codac/plantcon

trolhandbook
[2] F. Di Maio et al., “CODAC Core System, the ITER

software distribution for I&C”, Proc. of ICALEPCS
2013, San Francisco, http://jacow.org

[3] Eclipse web site : http://www.eclipse.org
[4] Hibernate http://www.hibernate.org
[5] Spring http://www.springsource.org
[6] EPICS http://www.aps.anl.gov/epics
[7] CSS http://controlsystemstudio.github.io
[8] Postgresql http://www.postgresql.org
[9] Primefaces http://primefaces.org
[10] Velocity http://velocity.apache.org
[11] ANTLR http://www.antlr.org
[12] SVN http://subversion.apache.org
[13] JAXB https://jaxb.java.net

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC003

Data Management and Processing

ISBN 978-3-95450-139-7

553 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

