
SCALABLE ARCHIVING WITH THE CASSANDRA ARCHIVER FOR CSS

S. Marsching∗, aquenos GmbH, Baden-Baden, Germany

Abstract

An archive for process-variable values is an impor-

tant part of most supervisory control and data acquisition

(SCADA) systems, because it allows operators to investi-

gate past events, thus helping in identifying and resolving

problems in the operation of the supervised facility. For

large facilities like particle accelerators, there can be more

than one hundred thousand process variables that have to

be archived. When these process variables change at a rate

of one Hertz or more, a single computer system can typi-

cally not handle the data processing and storage. The Cas-

sandra Archiver has been developed in order to provide a

simple to use, scalable data-archiving solution. It seam-

lessly plugs into Control System Studio (CSS), providing

quick and simple access to all archived process variables.

An Apache Cassandra database is used for storing the data,

automatically distributing it over many nodes and provid-

ing high-availability features. This contribution depicts the

architecture of the Cassandra Archiver and presents perfor-

mance benchmarks outlining the scalability and compar-

ing it to traditional archiving solutions based on relational

databases.

INTRODUCTION

Archiving of process-variable (PV) values is a challenge

for many large experimental physics facilities (e.g. parti-

cle accelerators). While there are plenty of tools for stor-

ing experimental data, even at very high rates, these tools

are typically designed to store the data acquired for well-

defined experiments. However, the number of tools that

are designed to store continuous time-series data is rather

limited.

The Cassandra Archiver [1] has been designed in or-

der to provide a scalable and reliable data-store for time

series data, as it is typically provided by control-system

PVs. The system is very scalable because its performance

scales linearly with the number of participating nodes. Its

built-in decimation mechanism allows very quick data re-

trieval, even over very long periods of time. The Cassan-

dra Archiver is based on the Control System Studio (CSS)

framework [2] and neatly integrates with it. However, it

can also be used independently of CSS. The PV abstrac-

tion layer provided by CSS is used to support archiving

of EPICS PVs, however the layer can be easily adapted to

support PVs coming from other control systems.

∗ sebastian<dot>marsching<at>aquenos.com

APACHE CASSANDRA

Apache Cassandra [3] is a distributed, scalable, and

highly available key-value store that is being developed and

maintained by the Apache Software Foundation. The data

model used by Cassandra has been inspired by the data

model of Google Bigtable [4].

History

Apache Cassandra was initiated at Facebook to facilitate

their need for a scalable and highly-available data store. In

2008 the software was released to the public under an open-

source license. In 2009 the software became an Apache

Incubator project and was promoted to an Apache top-level

project in 2010.

Data Model

The data model of Apache Cassandra was inspired by

the data model used by Google Bigtable [4]. A so-called

cluster is built by the Cassandra instances running on one or

multiple (up to a few thousand) computers. Each computer

participating in the cluster is called a node. All nodes of a

cluster are completely equal; there is no master node.

In contrast to a relational database management system

(RDBMS), data is not organized in tables but in column

families. A column family effectively is a two-dimensional

map where the keys of the first layer (row keys) are not

ordered and thus can easily be distributed over the cluster,

allowing for linear scaling. The key-value pairs on the sec-

ond level (columns), however, are ordered by their keys,

and thus it is possible to efficiently retrieve a certain range

of columns for a row. Unlike a table in an RDBMS, a

column family does not necessarily have a fixed structure.

That means that the internal structure of each row can be

different.

Replication

In order to provide high availability, each piece of data

stored in a keyspace (the structure which aggregates col-

umn families for an application) is stored on multiple

nodes. The number of nodes used for storing a piece of

data is called the replication factor and can be configured

per keyspace. Therefore, the replication factor can be con-

figured to match the availability requirements of each appli-

cation. A higher replication factor increases the availability

but reduces the disk-space efficiency.

Benefits

Because of its design, Apache Cassandra is extremely

scalable. The throughput and the amount of data that can

be stored scale linearly with the number of nodes [5]. New

TUPPC004 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

554C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing



nodes can be added while the cluster is running, thus it is

easy to grow the cluster as the demand grows.

The on-disk storage format is optimized for a high

throughput: All write operations are sequential, thus the

number of seeks is minimal and the average write-rate is

high. In addition to that, all data written on disk is com-

pressed, resulting in an even higher read and write rate and

saving disk space.

The replication scheme allows for the use of cheap hard-

ware because the reliability of a single node is far less im-

portant. Availability is not ensured on a per-node basis (e.g.

using RAID), but by replicating the data across multiple

nodes. This increases the availability because it accounts

for the failure of any type of hardware component.

When compared to an RDBMS, Apache Cassandra of-

fers better availability and performance at the cost of fea-

tures (e.g. complex queries are not supported). This makes

it optimal for the storage of time-series data.

When compared to other key-value stores with a similar

data model (e.g. Apache HBase, Hypertable), Apache Cas-

sandra is easier to setup and requires less maintenance. In

particular, unlike HBase and Hypertable, Apache Cassan-

dra does not have a master node and thus does not have a

single point of failure.

CASSANDRA ARCHIVER

When the Cassandra Archiver was developed at aquenos,

the primary aim for its design was to create an archiving

solution for EPICS PVs that would be very scalable and

would have a performance that would be the same as or

even better than the existing solutions.

Apache Cassandra was chosen as the storage backend

for three reasons: First, it had the scalability and high avail-
ability that was required. Second, it promised a good input /

output (I/O) performance when being used correctly. Third,

it was easier to setup and maintain than the other products

that were considered, in particular because its architecture
does not have a single point of failure.

CSS was chosen as a development platform because it

provides the means to support different control systems and

already provides some infrastructure for archiving that has
been developed for the RDB Archiver [6]. Besides, the

support for CSS makes it easy for users to integrate the

Cassandra Archiver into their infrastructure.

Data Model

Since version 2.0 the data model of the Cassandra

Archiver has been optimized for best performance. In order

to achieve this goal, a concept is needed where the number

of rows and the number of columns per row are balanced.

Therefore, data for the same PV and period of time (called

a bucket) is aggregated in a single row [7].

When reading data, all buckets that may contain data for

the given time interval are read. Typically, a bucket con-

tains about one million samples, so that for most queries

looking at two buckets is already sufficient. The start of

each bucket is aligned to its size and the zero timestamp,

so that it is enough to keep a list of bucket-sizes used in the

past and no directory containing an entry for each bucket

needs to be kept. This makes this structure very scalable.

The size of the bucket used for storing live data is deter-

mined on start-up by looking at the sample rate configured

for the respective PV.

Decimation

Often a user does not want to get detailed data for every

sample, but rather wants to see a quick trend over a longer

period of time. If such a trend is created by reading all sam-

ples for the period and then decimating them before creat-

ing the plot, this process can take considerable time, even

if this process takes place on the server (like it does for the

RDB Archiver), because all data has to be read from disk.

Therefore, the Cassandra Archiver has the abilitiy to create

archives with decimated samples on the fly while archiv-

ing the raw samples. This way, a request for an extended

period of time can be served from the decimated archive

and thus requests for long periods of time can be served

within seconds instead of minutes. The extra disk space

spent on the decimated samples is negligible because stor-

age in an Apache Cassandra database is cheap compared to

an RDBMS.

The levels used for decimation (called compression lev-

els) can be configured for each PV. For example, a PV hav-

ing a change rate of one sample per second might have

compression levels of 30 seconds, 5 minutes, 1 hour, and

12 hours. In this example a request to plot the data for

the last three years could be served from the 12 hours data,

resulting in only 2190 samples to be read instead of 94.6

million samples for the raw data.

Decimated samples represent the actual average value

for the respective period of time and also include the min-

imum and maximum value. Thus, the user can get a good

idea about where interesting things might have happened

and thus zooming in might make sense.

An additional benefit of the compression scheme is that

different retention periods can be configured for different

compression levels. Thus, the raw data could be kept for a

limited time only, while still allowing to get a coarse trend

of the data for a long period of time.

Data Access

Access to the data stored in the Cassandra database is

provided through a plugin for the CSS data browser [8].

The JSON Archive Proxy [9], that provides access through

a simple JSON-based HTTP web service, can be used as an

alternative way of access. Therefore, applications that are

not based on CSS can still access the archive data easily.

COMPARISON WITH OTHER

ARCHIVERS

There are a few archiving solutions which have been de-

veloped to archive EPICS PVs. In particular three pre-

existing solutions are interesting for a comparison be-

cause some of them share some concepts of the Cassandra

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC004

Data Management and Processing

ISBN 978-3-95450-139-7

555 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Archiver while others are widely used in EPICS control

systems.

Channel Archiver

The Channel Archiver [10] is the oldest of the widely-

used archiving solutions for EPICS. It is written in C++

and uses its own data-format for on-disk storage. The data

can be accessed through an XMLRPC interface.

The data-format used is optimized for time-series data,

and thus the Channel Archiver can sustain a high write-rate

for samples. However, when it comes to reading data, it

does not scale very well. Some of the scalability issues

have been addressed recently [11], using a data-model that

is similar to Apache Cassandra. However, multi-node op-

eration is still not supported completely and thus the scala-

bility and availability are limited.

Due to the substantial work required to maintain and im-

prove an internal data-storage engine, some people have

moved to the RDB Archiver as a replacement.

RDB Archiver

Due to the above-mentioned problems, the RDB

Archiver [6] was developed. Instead of relying on its own

data format for on-disk storage, it stores the archived chan-
nels in a relational database. At the moment MySQL, Post-

greSQL, and Oracle are supported. The software is written

in Java and uses a modern design, being based on CSS. The

Cassandra Archiver reuses parts of this software.

Compared to the Channel Archiver, the write rate for

samples is lower by a factor of about seven [12]. The

scalability is basically determined by the scalability of

the RDBMS being used. There is a clustered version of

MySQL, that can be used to distribute data and to provide

high-availability. However, given the poor-performance

per node, the cluster has to grow quite large, which apart

from being expensive can also create additional perfor-

mance problems [5, 13]. When using Oracle instead of

MySQL, the license costs, which typically increase with

the size of the cluster, make it undesirable to deploy a huge

cluster.

The main reason for the performance problems with the

RDB Archiver is that RDBMS have not been designed to

store time-series data, but to store relational data. There-
fore, their design focuses on features like transactional con-
sistency and complex queries rather than high write and

read rates for sequential data. This affects the performance
negatively for applications like time-series data, where data
is usually read and written in rather large chunks.

HyperArchiver

Based on the insight that RDBMS are not optimal for

storing time-series data, the HyperArchiver [14] was de-

veloped. Like the Cassandra Archiver it shares some of

its code with the RDB Archiver and uses a Hypertable

database for storing the archived samples. The configu-

ration data is stored in a MySQL database, so that two

database systems have to be maintained and kept available.

Unlike Apache Cassandra, Hypertable’s design has a

master-role and thus a single point of failure, limiting the

availability. Also Hypertable is harder to setup because it

relies on the Apache Hadoop File System (HDFS) for data

storage.

The HyperArchiver has not left the prototype-stage so

far. The newest version released is from 2010 and has

properties like host-names hard-coded into the source code,

making it unsuitable for production use.

PERFORMANCE EVALUATION

For evaluating the performance of the Cassandra

Archiver, a small cluster of Amazon Web Service (AWS)

Elastic Computing Cloud (EC2) instances was used in or-

der to ensure that all systems used in the evaluation have

the same hardware characteristics. All nodes were running

the Ubuntu 12.04 LTS 64-bit operating system.

The EPICS software IOCs that produced the samples to

be archived were placed on separate nodes in order to as-

sure that the number of samples served were not a limiting

factor.

In order to compare the performance of the Cassandra

Archiver and the RDB Archiver, a database cluster con-

sisting of only a single node was used. MySQL is typi-

cally running on a single node only, and the per-node per-

formance of a clustered database cannot be expected to be

better than the single-node performance.

For both the RDB and the Cassandra Archiver, two

archive engines were running on the node because tests

showed that two engines running in parallel had a slightly

better performance than a single engine, probably due to

better usage of the multiple processor cores. The sample

write-rates measured were averaged over a period of five

minutes.

The RDB archiver was configured to archive 2000 chan-

nels (1000 per engine) at 10 Hz to a MySQL database using

the MyISAM engine. With this setup, the RDB Archiver

had a write rate of 9177 samples per second. Further in-

creasing the number of channels archived did not increase

the number of samples written.

The Cassandra archiver (running on the same kind of

machine) was configured to archive 8000 channels (4000

per engine) at 10 Hz. Again, further increasing the number

of channels archived did not increase the number of sam-

ples written. With this setup, the Cassandra Archiver had a

write rate of 79691 samples per second, which is larger by a

factor of eight compared to the RDB Archiver (see Fig. 1).

This means that the performance of the Cassandra Archiver

is in the same order of magnitude as the performance of the

Channel Archiver as it is about seven times faster than the

RDB Archiver [12].

The second test focused on testing the scalability of the

Cassandra Archiver when running in a multi-node cluster.

For this test, additional database nodes with the same con-

figuration were added to the cluster, increasing the number

of archive engines used by two with each node.

TUPPC004 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

556C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing



Figure 1: Comparison of RDB Archiver (MySQL) and

Cassandra Archiver performance.

Figure 2 shows the write rate for a growing number of

nodes (up to seven): The actual write rate (blue diamonds)

scales nearly linearly (dashed line), resulting in a write rate

of about 420k samples per second for seven nodes. This

result is consistent with the expectations for an application

using the Apache Cassandra database [5].

Figure 2: Expected linear and actual scaling of the Cassan-

dra Archiver as nodes are added.

This test shows that a small cluster consisting of less than

ten nodes, each using cheap hardware, can already archive

several hundreds of thousands of samples per second.

SUMMARY

The Cassandra Archiver provides an archiving solution

for EPICS channels that outperforms the RDB Archiver

and neatly integrates into the CSS infrastructure. It ben-

efits from the design of the Apache Cassandra database,

that provides a data store that stays available in the event of

a single node failure. The built-in decimation feature of the

Cassandra Archiver allows users to quickly browse through

the data for extended periods of time.

In the future, further developments of the Cassandra

Archiver may concentrate on automatically distributing

processing of PVs over the cluster and automatically ad-

justing the configuration settings to the actual change rate

and sample size of a PV.

Due to the use of a widely-used data store, the Cassandra

Archiver will benefit from further developments of Apache

Cassandra and can scale to very large cluster sizes, poten-

tially storing hundreds of tera-bytes or even peta-bytes of

data.

REFERENCES

[1] aquenos GmbH, “Cassandra Archiver for CSS”,

http://oss.aquenos.com/epics/

cassandra-archiver/.

[2] K. Kasemir, “Control System Studio Applica-

tions”, ICALEPCS’07, Knoxville, October 2007,

http://www.jacow.org/.

[3] The Apache Software Foundation, “Apache Cassandra”,

http://cassandra.apache.org/.

[4] F. Chang et al., “Bigtable, A Distributed Storage System

for Structured Data”, OSDI’06, Seattle, November 2006,

http://research.google.com/archive/

bigtable.html.

[5] J. Ellis, “2012 in review: Performance”,

DataStax Developer Blog, January 2013,

http://www.datastax.com/dev/blog/

2012-in-review-performance.

[6] K. Kasemir, “RDB Channel Archiver”, March 2010,

https://ics-web.sns.ornl.gov/css/docs/

RDBChannelArchiver.doc.

[7] T. Hobbs, “Advanced Time Series with Cassan-

dra”, DataStax Developer Blog, March 2012,

http://www.datastax.com/dev/blog/

advanced-time-series-with-cassandra.

[8] K.U. Kasemir, “Control System Studio (CSS) Data

Browser”, PCaPAC’08, Ljubljana, October 2008, TUP009,

p. 99, http://www.jacow.org/.

[9] aquenos GmbH, “JSON Archive Proxy for CSS”, February

2013, http://oss.aquenos.com/epics/

json-archive-proxy/.

[10] K.U. Kasemir and L.R. Dalesio, “Overview of the

Experimental Physics and Industrial Control Sys-

tem (EPICS) Channel Archiver”, October 2001,

http://arxiv.org/abs/cs.oh/0110066.

[11] J. Rowland et al., “Algorithms and Data Structures for the

EPICS Channel Archiver”, ICALEPCS’11, Grenoble, Octo-

ber 2011, MOPKN006, p. 96, http://www.jacow.org/.

[12] “Control System Studio - RDB Archive”, October 2010,

http://sourceforge.net/apps/trac/cs-studio/

wiki/RDBArchive.

[13] J. Shute et al., “F1: A Distributed SQL Database

That Scales”, Proceedings of the VLDB En-

dowment, Vol. 6, No. 11, Trento, August 2013,

http://research.google.com/pubs/pub41344.html.

[14] M. Giacchini et al., “HyperArchiver: An EPICS Archiver

Prototype Based on Hypertable”, ICALEPCS’11,

Grenoble, October 2011, MOPKN012, p. 114,

http://www.jacow.org/.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC004

Data Management and Processing

ISBN 978-3-95450-139-7

557 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


