
IDENTIFYING CONTROL EQUIPMENT

M. Clausen, M. Möller DESY, Hamburg, Germany

Abstract
The cryogenic installations at DESY are widely spread

over the DESY campus. Many new components have

been and will be installed for the new European XFEL.

Commissioning and testing takes a lot of time. Local tag

labels help identify the components but it is error prone to

type in the names. Local bar-codes and/or Data Matrix

codes can be used in conjunction with intelligent devices

like smart (i)Phones to retrieve data directly from the

control system. The developed application will also show

information from the asset database. This will provide the

asset properties of the individual hardware device

including the remaining warranty. Last not least cables

are equipped with a bar-code which helps to identify start

and endpoint of the cable and the related physical signal.

This paper will describe our experience with the mobile

applications and the related background databases which

are operational already for several years.

INTRODUCTION

For those familiar with day to day operations of bigger

cryogenic plants it is a usual problem to work in the field

and identify mal functional equipment. Several questions

arise immediately: Do we have a spare? If yes – where

can I find it? If there’s no spare or if you want to fill up

the stock you need to find out when specific equipment

was purchased – and where (!).

So you have to find out what kind of equipment it is

and which specific version of a specific kind. Then you

will try to find the folder where you have gathered your

purchase orders. But in which year did you buy this

equipment? – And from which vendor?

All of these questions come easy when you have tagged

your equipment upon arrival – before it has been installed

in the field. This was the starting point of our internal

asset database. We collected the data of our new

equipment in a database and each component was tagged

with a unique number. In the beginning it was a label in

clear (ASCII) text form. We could read the ID and check

for the information in our database from a terminal. For a

short time we used barcode. This caused trouble when

using barcodes on small devices with small barcode

printouts. Nowadays we are using Data Matrix code

which can be easily and clearly identified by most apps

on nearly any smartphone.

Choosing the right (Tag-) Code
As mentioned above we have chosen the Data Matrix

code for our tags. The advantage is clearly that it is still

readable even when printed out on a small tag. There’s

often the question whether QR-Code wouldn’t be a better

choice? (See Fig. 1 for a comparison of the two

different codes). QR can be used to store more complex

data like a complete http address or more properties of the

equipment. This would allow sending the QR-Code

directly to an http-server and getting the results back. We

did not see an advantage in this approach. Http servers

tend to change. Application names tend to change. Even

technologies accessing the information will change over

the years – at least for time periods of our projects which

typically run for more than one decade.

Figure 1: Comparison of Data Matrix and QR-Code

displaying the same string: “1-203074”.

In our case we want to keep it smart and easy. Just the

ID of the equipment shall be kept in the tag. All of the

other information shall come from the database storing all

the metadata and keeping the relations to other data

sources.

ACCESSING DATA

Different locations require different access methods.

The operators in the control room refer to the equipment

from the control systems point of view (namely the

channel– or device names they are working with). The

technician in the field on the other hand looks at the ‘real’

equipment and wants to know which channel is connected

to this equipment and which read back value is the actual

one.

Control System Studio (CSS)

The operator consoles in the cryogenic control room

are running Control System Studio (CSS). CSS is an

extensible set of Eclipse plugins written in Java.

Figure 2: Contribution menu in CSS.

TUPPC006 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

562C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

 ‘Information on your fingertips’ is the term created for

easy access to additional information related to the

current process channel the operator’s mouse is pointing

to. The technical realization of this functionality is a

contribution menu (Fig. 2).

Each CSS plugin which can handle channel information

is registered in the contribution menu. In practise the

operator is working with a channel or device and wants to

get more detailed information. This could be a request to

display archived data, to see the alarms of the last 24h or

– to find out what the related equipment looks like, where

it is installed and whether spare parts are available.

Here come our equipment databases into play.

DATABASES

Equipment databases have a long history in control

system environments. Some of these only contain

hardware information. Other databases also contain

information about the devices with respect to the machine

lattice of an accelerator or similar information.

In Many cases these kind of information are stored in

the same database structure tightly connected to each

other with strong relations between the individual tables.

Whenever changes apply to any table in this database

driven environment most – if not all – other components

are affected. We went through the same learning curve

and – as a result – we decided to keep individual

information in individual database tables which are

loosely coupled to each other. Coupling is performed by

IDs in the form of the same strings which are defined in

the individual tables – or set of tables. This implies that

not every table is related to each other table but in many

cases by another relation in another table.

Generic Database Access

Information separation is not the only important design

criteria. Another criterion is the access to the data. In the

end a client application just wants to get search results but

it should not have any specific knowledge or code to

select the information from all of the data sources.

This resulted in a generic service architecture which

hides all of the complexity from the client application.

When a client application sends a request for a control

system channel, a barcode-number or any other specific

ID, a dispatcher will take care of it. The dispatcher will

‘ask’ all of the registered services whether the content of

the string was known to that specific service. The service

itself will try to find a match with any selection ID stored

in it’s tables. Whenever a match is found it will prepare

the answer for the dispatcher. If a second ID is stored in

conjunction with the initial ID it will try to gather also

that information through the dispatcher from yet another

service. In the end the client application will receive a

complete answer with all possible related entries in all

registered services.

Having this generic service layer in place it is easily

extensible with new data sources. The only criteria such a

service must fulfil is that it must match with any other ID

of any other service already registered.

The list of the actual implemented equipment databases

and the main access IDs are the following:

Asset Database

The asset database is used to identify all equipment in

the cryogenic control system starting from individual I/O

cards to mainframes or RAID systems. In every case it is

used to store purchasing information, the state of the

equipment (in stock, in repair, installed (in) …). The

information is installed in is important to be able to

actually find this equipment at DESY.

In practise the information has helped to find out

whether spare parts are still available or where the

component was purchased and when.

The search IDs are: Asset-#; (DESY)Inventory-#

DESY Inventory

The DESY inventory number has references to the SAP

database. Purchase IDs and related information is

available here.

The search IDs are: (DESY)Inventory-#

Searching across Data Sources

Having the two data sources in place it is now possible

to get internal information from the asset database when

the inventory number is known and vice versa to find out

the inventory number from the asset ID entry.

EPICS Channel and I/O References

EPICS IOC configurations (called EPICS databases)

are created at DESY by means of a special configuration

tool. The database configuration tool (DCT) is designed

to create hierarchical structures of EPICS records. These

structures allow a device oriented approach where

prototypes of record based processing chains can be

nested into each other and as a result creates a flat EPICS

database configuration file. The DCT configuration

information on the other hand is stored in an ASCII file

which is under cvs version control.

The reference from the EPICS records to the I/O

hardware is performed through so called IO_NAMES.

These are unique names in the I/O database. When the

EPICS database is created, the IO_NAMES get resolved

and the underlying addresses of the I/O equipment replace

the IO_NAMES in the individual instances of the EPICS

records. This way the database engineer and the

equipment engineer can work independently from each

other. The ‘clue’ between the two are the IO_NAMES.

The search IDs are: EPICS Record Name; IO_NAME

Device Database

The configuration of Profibus DP/ PA I/O devices is a

complicated task. The commercial configuration tools are

basically only available for Windows based workstations.

In this case the created configuration file would be in

binary format and specifically designed for a specific

Profibus hardware board. In our case we have to

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC006

Data Management and Processing

ISBN 978-3-95450-139-7

563 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

configure the memory layout of all the Profibus devices

for a VxWorks based control system in a form that the

driver of the board can read it and on the other hand the

addresses in the dual ported memory can be configured in

the EPICS database. The configuration tool fulfils these

requirements. It creates a configuration file for the driver

and provides memory address layout information through

a special service layer. The most complicated task is

parsing the configuration of all the so called GSD files

and keeping this device specific configuration ‘in mind’

when configuring the Profibus nodes. The link between

the EPICS database and the device database are the

IO_NAMES. These are unique in the whole system, - like

the EPICS record names. A service resolves the

IO_NAMES in the device database and returns the

Profibus memory address in the dual ported memory.

The device database also keeps documentation for the

specific I/O devices and stores also the current Asset-# of

the real device as it is currently installed in the field.

The search IDs are: IO_NMAME; Asset-#

Cable Connections

In former times we had several ‘special events’ where

the tram in the HERA tunnel was scratching along the

tunnel by accident. Unfortunately there were some cables

mounted on the wall and the cables were cut. Of course it

was essential to know which components were affected.

This information would help to decide whether

emergency operations could continue. In the cryogenic

controls case: Can we keep the magnets cold? At that

time we were not good in documenting cable numbers,

attaching labels on the cables and providing an electronic

database of the cables and the equipment connected to

them.

This situation shall be avoided in the future. A cable

database which actually keeps the information about the

devices connected to the cables shall help for future

maintenance and hopefully no incidents. But not only

incidents are important to handle. Also the question in

case of maintenance work is important and last not least if

you are working with a device and want to know to which

cable this specific device is connected.

The search IDs are: Cable-ID; IO_NAME

EPICS Data

A very special type of database access is the EPICS

live data service. This service obviously provides live

data from the control system. Another important

information is the actual state of the observed channel

(connected, disconnected, invalid …).

The search IDs are: Channel name

Database Extensions

The generic approach based on OSGI services allows

an easy extendibility of the data sources behind the

dispatcher. A new data source only has to share one

search ID with any other service and it can be integrated

into the system.

USER INTERFACES

There are currently two user interfaces operational. One

app for the iPhone and another integrated into CSS.

iPhone App

The development of a generic service layer for the data

sources was driving the idea to develop a generic user

interface on the iPhone. ‘One app serves all’ is the idea

behind this generic interface. Only a handful of

components are supported in the display. These can be

dynamically combined. The display is configured by an

XML data stream which gets locally parsed. The whole

workflow looks like this:

 Scan a barcode or Data Matrix code. – Or just

type in the code, name or whatever is

available.

 Send request to a web-service which is using

the already mentioned dispatcher to query all

the defined OSGI Services.

 Services and dispatcher prepare an XML data

stream back to the app.

 The app is parsing the XML stream and

displays the content with the predefined

widgets on the iPhone display.

Figure 3: Generic iPhone app with it’s basic components.

Figure 3 shows the generic iPhone app. The basic

components are:

1. Display of the currently observed ID

2. List of tag/ value pairs

TUPPC006 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

564C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

3. List of tag/ value pairs with a link to another

page. The additional information will retrieved

by another request to the web.-service

4. (Not shown here) Text entry field(s)

5. A text field with describing text information

The type ‘3’ links can be http links or links to another

internal app in the iPhone. In the case of an EPICS

channel this could be a link to the ArchiveViewer (Fig. 4).

 Figure 4: Archive Viewer App on the iPhone.

CSS User Interface

The development on the CSS side is still ‘work in

progress’. Some basic features already exist like the entry

in the contribution menu (Fig. 2) and the resulting pop-up

window which displays information from three different

data sources (Fig. 5):

Figure 5: Pop-up window called from contribution menu.

The second example shows the list of documents which

are available for a specific device type. The service

identifies a valid channel in the I/O configuration -> the

device type -> and selects all documents available for this

device type (Fig. 6).

Figure 6: Documents available for a specific device type.

Selected by channel name.

CONCLUSIONS

The complexity of a single database with several data

sources in various tables which have tight relations to

each other has been avoided. The structure of each data

source has been kept as simple as possible. Each new data

source just needs one ID in common with any other data

source to integrate it. A service layer has been developed

which covers data source specifics.

A generic iPhone app has been developed which

handles any answer from the service dispatcher by

parsing an XML file. No specific code for a new data

source is necessary.

The integration in CSS is achieved by CSS contribution

menus. Data source specific applications can be called

from CSS to display the full dataset specific properties.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC006

Data Management and Processing

ISBN 978-3-95450-139-7

565 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

