
DEVELOPMENT OF AN INNOVATIVE STORAGE MANAGER FOR A
DISTRIBUTED CONTROL SYSTEM

M. Mara INFN-AC, Frascati, Italy
C. Bisegni, G. Di Pirro, L.G. Foggetta, G. Mazzitelli, A. Stecchi, INFN-LNF, Frascati, Italy

L. Catani, INFN-Roma2, Rome, Italy

Abstract
!CHAOS is an INFN project aimed at the definition of a

new control system standard for large experimental
apparatus and particle accelerators based on innovative
communication framework and control services concepts.
!CHAOS has been developed to address the challenging
requirements in terms of data throughput of the new
accelerators under study at INFN. One of the main
components of the !CHAOS framework is the historical
engine (HST Engine), a cloud-like environment optimized
for the fast storage of large amount of data produced by
the control system’s devices and services (I/O channels,
alerts, commands, events, etc.), each with its own storage
and aging rule. The HST subsystem is designed to be
highly customizable, such to adapt to any desirable data
storage technologies, database architecture, or indexing
strategy and fully scalable in each part. The architecture
of HST Engine and the results of preliminary tests for the
evaluation of its performance are presented in this paper.

THE !CHAOS FRAMEWORK
The !CHAOS framework has been designed after an in-

depth evaluation of the new software technologies for
data transfer and data storage emerging from the
development of high-performance Internet services, such
as the non-relational databases (NRDB) and the
distributed caching system (DCS). Both are designed for a
high degree of horizontal scaling that allows the insertion
and retrieval of the data at the highest possible
throughput, limited only by the saturation of either the
available bandwidth or the network connections of the
subsystem.

While the NRDB logics and techniques are used to
implement the indexes management and the fast data
retrieval the DCS is used to provide the “live data
sharing”, a scalable service for sharing the real-time
device data. This software provides in-memory key/value
storage and permits fast accesses to the same key/value by
many concurrent clients. This caching layer avoids
overloading the front-end controller with multiple reading
accesses from clients that need to fetch data of a device.

These two software technologies represent the core
components in the design of the new control system
named !CHAOS [1, 2, 3].

In the !CHAOS architecture, the Front End Controllers
(FEC) push acquired I/O channels and alarms data into
both live and history data cloud (DC), which means that

data collection mechanism is inherently included in the
!CHAOS communication layer. User interface
applications, feedbacks or measurement algorithms can
receive hardware data from the DC by issuing a “get”
command or by registering to the push data services of the
DC. The use of “get” command permits to regulate the
effective refresh rate needed by every node, the push
service instead, forwards the data at the same rate as it is
pushed into the DC from the FEC.

Figure 1: Data exchange between components by means
of !CHAOS Data Cloud.

The data payload sent by the front-end controllers to the
DC is serialized according to the BSON specifications [4].
By construction, the formatting structure of the serialized
data, its length and the offset of each value within the
string do not change if only the data values are changed.
By taking advantage of these features, we can decide to
update either the entire payload (if needed) or just a part
of it. This permits to scale down the bandwidth
requirements for updating, at a given refresh rate, the
device state into the DC.

All others parameters of !CHAOS services and
controlled devices such as data refresh rates, as well as

TUPPC011 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

570C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

other meta-data, configurations, commands, data syntax
and semantic etc. are managed by the Meta-Data Server
(MDS). It manages FECs registration at start-up and later
provides directory services to clients that need, for
instance, to locate the DCS server for pushing its data or a
FEC’s IP for sending RPC commands. Both static and
dynamic configuration data of all !CHAOS services and
nodes are managed by this central repository. The MDS
has an important role also in the management of the
access to the Storage subsystem: it stores the logic and
data used by the FECs and user interfaces to identify the
appropriate access point to the Cloud. Thanks to this
information a first level load balancing is already
achieved before accessing the Data Cloud.

!CHAOS STORAGE SUBSYSTEM
In !CHAOS the data storage is provided by the service

called History (HST) Engine. Its design (timed data
oriented), will give !CHAOS an important technology
advantage, in terms of performance, scalability and
flexibility, against the most popular DAQ standards for
controls. The main ideas at the base of the data acquisition
process are the following: a distributed file system is used
to store data produced by machine operations while a
KVDB manages the indexes structure. At the moment,
candidate technologies for these services are respectively
Hadoop [5] and MongoDB [6] that we choose because of
the large users community and the abundance of use cases
that we used as references. The functionalities of the
!CHAOS HST Engine are allocated into three dedicated
components, or nodes, namely the !CHAOS Query
Language (CQL) Proxy, the Indexer and the Storage
Manager.

 This document focuses on the flow of the data in the
storage operation. Figure 2 shows the role of CQL Proxy
and Storage Manager in the data acquisition and
organization. As soon as the data has been organized it
will be more easily indexed for be made available. Every
CQL proxy works on its personal space on the cache area
and the Collector processes (a part of storage manager),
instead, are working on all of the cache areas.

Figure 2: The !CHAOS multi-write concept.

Staging the Data

A Front End Controller, i.e. a !CHAOS Control Unit
(CU), starts the writing process by pushing a dataset to
one of the storage subsystem CQL Proxies. The CU
already knows which CQL Proxy is better to contact

because during the initialization of the system (or the boot
of the device) an algorithm tries to allocate at the best the
resources of the whole Storage system. By checking the
medium data-pack size of the devices, and its pushing
rate, the registered CQL Proxies are “allocated” to the
devices in order to load balance the network infrastructure
and the total computing power. This technique allows
implementing an inherited hot swap in case of proxy
down time because the users of the proxies (Data
producers and consumers) already know the full list of
accessible access point if their main one goes down. The
CQL Proxy plays the role of an access point to the storage
subsystem, hiding all the complexity of data storage
procedures to the user. Upon receiving the package, e.g. a
serialized device’s dataset, the caching related logic inside
the access point starts the data flow inside the Storage
infrastructure. To ensure multi-write capabilities to the
entire system we implemented a Cache layer such that all
the packets received from clients (e.g. FEC) are stored by
proxies in a common area (2) structured as the following.
For each CQL Proxy a logical path is created in the
distributed FS. To improve the performance of the system
each proxy can allocate a pool of threads with the only
task of getting the packets received by the proxy and start
the allocation inside the file system. Each thread will
fetch the data packets from the proxy regardless the
device that produced them, starting to write them in files
inside the path associated to the Proxy. The data pack
wrote by a thread is stored into a private cache chunk
(CC). Once a CC is no more valid (in terms of space or
time elapsed), it will be available for the next phase
described below.

Moving the Data to Device Logical File (DLF)
This phase consists of reading a closed cache chunk,

read every packet and write it in the Logical File for the
corresponding device. A specific process, contained into
the Storage Manager, called “Collector” achieves this
task. Every Collector process has a pool of thread and
each one of these scans the cache directory to find a cache
chunk to be processed. The selected cache chunk will be a
closed one by the action of the proxy and not yet selected
by other thread or other collector processes.

The selected chunk will be read pack by pack. In every
pack, it will be found the “device id” that has generated
the data then it will be moved to the device logical file.
Current collector thread has its own LogicalFileWriter,
allowing having one logical file chunk for thread. Only
one thread writes on a single Logical File Chunk, the
same technic used by the proxies. When all the packets
into the cache chunk are read, the chunk is deleted.

This method allows improving the input performance of
the system by increasing the number of proxies writing
concurrently to the cache. Clearly, it is necessary to
introduce appropriate strategies to allow packets
reordering inside the file system such that each logical
file, associated to a data producer, is chronologically
ordered at any time.

Proxy_n Collector_n

Proxy_1 Collector_1

Device_2 DLF

Device 1
Device_1 DLF

Device 2

Virtual File System

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC011

Data Management and Processing

ISBN 978-3-95450-139-7

571 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Chunk Fusion of the Logical File (LF)
After the “Moving” phase (Figure 3), every chunk of the

logical file will be ordered in time (every data packet has
timestamp >= than the previous one). Anyway two or
more LF chunks can be overlapped in time (OLFC –
Overlapped Logical File Chunk, a side effect of the fast
moving phase). These overlapped chunks are reorganized
by another process called “Fuser” (also contained into the
Storage Manager). Every DP of every chunk are “fused”
in a unique chunk that contains DP of every OLFC time
ordered. If the cache subsystem, in a fixed point in time,
receives an “old” packet, the fuser ensures the proper
chronological order of packets inside the device’s logical
files, by applying another merge operation on the right
chunks of the Logical File. After that system updates, for
each device, the timestamp of the newest packet
effectively stored in the file system, providing the data
consumers with quasi-real time information about the
packets effectively stored inside the Cloud.

Figure 3: The “Chunk Fusion” logic.

Both the cache chunk and the device logical files are
stored inside a distributed file system. Hadoop, our
current best candidate, is a distributed file system that
provides high throughput access to data, by automatically
replicating it in the other servers of the cluster ensuring a
full redundancy of the system. Once the data has been
stored, the CQL Proxy informs the pool of Indexer nodes
about the new written chunk and the first available
Indexer appends the task to its queue. When processing
the chunk, the Indexer first reads the packet (i.e. the
dataset), analyzes it and, according to the indexing rules,

updates the corresponding indexes. The default indexing
strategy will be by chronological order, i.e. based on the
timestamp and bunch/packet number within timestamp
intervals. The indexing procedure allows a faster retrieve
of the stored data by providing two different Indexes, the
Time Machine Index (TMI) and the Value Based Index
(VBI). The TMI is the default index in !CHAOS, because
all the stored data is ordered according to a continuous
timeline such that the timestamp is the primary key for all
the data fetched by a single device. The TMI is intended
as multilevel such to allow choosing the desired
granularity for every query forwarded by the proxies. The
second index, based on the values of the data stored, will
be available only on demand allowing the retrieval of
particular data patterns.

Storage test

Figure 4: The output of the staging and moving tests,
showing the MBs produced, in cache and stored in the FS.

It’s worth stressing that the solution we have just
described allows increasing any of the system’s
performance independently by scaling selectively its
components. A faster and higher data throughput from
front-end controllers, for instance, can be achieved by
increasing the number of proxies writing concurrently to
the cache. On the other hand the data throughput between
caches and device’s logical files can be increased by
growing the number of queues’ managers checking the
packets acquired and the indexing procedure can be
improved by increasing the number of indexer nodes.

The components described so far, related to the staging
and moving mechanism, have been tested off-line by
using a software simulation of these two phases. The
fusing phase has been removed from the numeric tests
because is not fundamental for the data acquisition
process: it is used once the data is already safe on the file
system. The tests have been run on a mid level Mac Pro

Fuser

Device_1 DLF

chunk 1

chunk 2

chunk n

Device_1 DLF

chunk n

time

T - start

merged (cunk 1 and 2)

TUPPC011 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

572C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

with two 2,8Ghz Quad-Core Intel Xeon, 18GB of DDR2
RAM, and a SATA2 SSD hard disk. The graph shown
here (fig. 4) is obtained by using two Producer processes
simulating ten devices running with 50 threads each, and
a single consumer process running on five threads. The
average data produced by the simulated devices is 3,5
MB/s simulating 515 channels pushing data packets of 68
B at 100Hz. The test environment is like a worst-case
scenario for this algorithm, because it cannot gain
performance by a distributed file system and a multitude
of proxy machines. In fact the data rates obtained can
grow almost linearly by increasing the number of proxy
machines and using a more appropriate file system. The
graph in figure 4 shows the three fundamentals
measurement in the caching system: the data produced by
the devices (in red), the data actually in the cache files (in
blue) and the data actually stored inside the device logical
files (in green). More intensive tests will be run in the
next months on the other parts of the storage system now
under development.

Figure 4: The !CHAOS Storage Infrastructure event list.

ACKNOWLEDGMENTS
The work is partially supported by FP7 Research
Infrastructures project AIDA, grant agreement no.
262025.

REFERENCES
[1] http://chaos.infn.it
[2] L. Catani et.al., “Introducing a new paradigm for

accelerators and large experimental apparatus control
systems” , Phys. Rev. ST Accel. Beams 15, 112804
(2012).

[3] L. Foggetta et.al., “Progresses on !CHAOS
development”, Proceedings of IPAC2012, New
Orleans US, http://www.JACoW.org

[4] http://bsonspec.org
[5] http://hadoop.apache.org
[6] http://www.mongodb.org

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC011

Data Management and Processing

ISBN 978-3-95450-139-7

573 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

