
PROTEUS: FRIB CONFIGURATION DATABASE*

V. Vuppala, E. Berryman, S. Peng, NSCL-FRIB, USA
L. Dalesio, BNL, USA

Abstract
There is need for an integrated information system that

manages the data and computational-logic used by an
experimental physics facility (EPF) during its design,
construction, commissioning, and operation. Such a
system can be used to manage design lattices, model
them, run what-if scenarios, tune the beams, troubleshoot,
manage calibration data, maintenance records, alignment
information and quality metrics, and generate reports for
funding or regulatory agencies. A critical component of
such a system is the configuration database. It manages
devices, their layout, measurements, alignment,
calibration, signals, and inventory. In this paper we
describe development of such a component. We describe
its architecture, database schema, services, and graphical
and programming interfaces.

INTRODUCTION
An integrated information system is critical for the

design, commissioning, operation, and maintenance of an
EPF. Distributed Information Services for Control
Systems (DISCS) [1][2] is a framework and
implementation of such a system. It is comprised of a set
of cooperating services and applications, and manages
data such as machine configuration, lattice,
measurements, alignment, cables, machine state,
inventory, operations, calibration, and design parameters.
It also includes computational services such as Online
Model and Unit Conversion. DISCS is a collaborative
effort of BNL, Cosylab, ESS, FRIB, and IHEP.

To enable development by multiple, dispersed, and
independent teams DISCS has been divided into several
domains [3]. Each domain is responsible for a portion of
the system, and provides tools and services to manage the
associated data and logic. One of DISCS' core service is
the Configuration Domain. It is concerned with the
configuration of the accelerator facility: the components,
their properties, design parameters, measurements,
calibration, maintenance, layout, and relationships among
components. Proteus is an implementation of the
Configuration Domain. It is being developed and used at
the Facility for Rare Isotope Beam (FRIB).

Architecture
The basic architecture for DISCS is shown in Figure 1.

It consists of three layers: Data, Service, and Application.
Data Layer represents all the data sources: managed,
unmanaged, structured, and unstructured. Service Layer is

composed of services. A service is a reusable software
component that implements a set of business functions,
has a formal and documented interface, and can be
located and accessed through standards-based
communication mechanisms. In our case, a service can
be thought of as a software process that implements
controls or physics related logic, and provides high-level
data structures to the user through REST-based [4] and
PVaccess [5] protocols. Application Layer consists of the
software tools or components that present the information
to the user.

Figure 1: Applications, services, and data.

Proteus, just like all of DISCS’ modules, is composed of
a database, one or more services, applications to manage
and load data, and an Application Programming Interface
(API).

CONCEPTUAL MODEL
In this and the following two sections we describe

Proteus’ data model. A component is any entity the
accelerator facility’s configuration: magnet, power
supply, cavity, rack, room, controller etc. Components
can be looked at in different ways, and have different
kinds of information associated with them: design data,
measurements, test data, alignment information, physical
characteristics etc. For our modelling concerns, we define
two kinds of components:

1. Physical-Component: This represents physical
entities; things that exist in the real world. A
physical-component has identifiers that can identify
it, and has attributes that can be measured and
calibrated. For example, the cavity with part
number T30802-MDE-0008 that was manufactured

* This work was supported in part by the U.S. Department of Energy
Office of Science under Cooperative Agreement DE-SC0000661, the
State of Michigan and Michigan State University

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC031

Data Management and Processing

ISBN 978-3-95450-139-7

623 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

by Jefferson Lab is a physical-component. A
physical-component has attributes such as
calibration records, measurements, traveler data,
manufacturer model etc

2. Logical-Component: It represents the entities that
exist on the blueprint or configuration (layout) of
the Accelerator facility. A small part of FRIB’s
configuration is shown in Figure 2; the various
elements in the figure are Logical-Components. For
example, devices LS1_CA01:CAV1_D1093 and
LS1_CA01:CAV2_D1101 are Logical-
Components.

Components, both physical and logical, are classified
into types. A Component Type represents a generic
component and its design. For example, there can be
several horizontal electrostatic dipoles with the same
characteristics i.e. they are interchangeable; in such case
the common characteristics are denoted by a Component
Type, ‘Horizontal Electrostatic Dipole Type I’. A
Component Type is a conceptual entity; Physical
Components are its manifestation in the real world, and
Logical Components are the manifestations on the EPF
layout. Component types have a hierarchy. For example,
QM1 is a quadrupole which is a magnet.

These concepts are illustrated in Figure 2. Cavity-A is a
Component-Type; it has attributes such as design
parameters, CAD drawings etc. The cavities
LS1_CA01:CAV1_D1093 and LS1_CA01:CAV2_D1101
are Logical-Components on FRIB’s LINAC Segment #1
at positions 1093 and 1101 respectively. They have
attributes such as distance from the source, optical
properties etc. However, they share the design parameters
and CAD drawings of the Component Type, Cavity-A.
At the bottom of the figure, the cavity with serial number
T30802-MDE-0008 is a Physical-Component. It also
shares its design attributes with the Component Type
Cavity-A. It can be installed at either position 1093 or
1101 of the LINAC segment #1. Let us say it is installed
at position 1101; it now represents the Logical-
Component LS1_CA01:CAV2_D1101. But at a later
date, it can be moved and installed at position 1093 to
represent the Logical-Component
LS1_CA01:CAV1_D1093.

Figure 2: Logical and physical components.

Physical-Components form the inventory. Physical-
components that are not installed (i.e. not linked to a
Logical-Component) are the spares. A physical
component is a real-world entity, a component type is its
design, a logical component is its configuration entity
(and an element is its simulation).

LOGICAL MODEL
There are two ways to model components:
1. A class or entity type per Component-Type. There

will be several entity types: Magnet, Cavity, Power
Supply, Segment etc. Each entity type will be
mapped to its physical representation (tables in
Relational Model).

2. An object (or entity instance) per Component-Type.
There will be three entity types: one each for
Logical-Components, Physical-Components, and
Component-Types.

The problem with the first approach is that it will result
in too many entity types and they keep on growing, which
will require changes to the schema. The second approach
solves this problem by having a single entity type for all
Logical (Physical) components. But how to represent the
different attributes of the various real-world component
with one entity type? It is inefficient and sometimes
impossible to associate all the attributes with one entity
type. A solution to this is to have the attributes as
Properties (Key-Value pairs). Based on the component
type, an entity instance will have different properties
associated with it. With this approach, associating
entities (JOIN operation in Relational Model) based on
attribute-values will be inefficient, and may lead to
performance degradation. After analyzing the pros and
cons of the two approaches, we have chosen the second
method.

Figure 3: Logical model (partial).

Figure 3 shows the logical model of the database. A
Logical-Component is based on exactly one Component-
Type. Similarly, a Physical-Component is also based on
exactly one Component-Type. However, there can be

 class Schema

Component-Type

Logical-Component

Physical-Component

Property

Signal

Installation-Record

Component-Relationship

Calibration-Record

Calibration-Measurement

0..*

part of

0..1

0..*

controls

0..*

1..*

performed-by

0..*

1..*

1

0..*

1

1

0..*

0..1

0..1 0..*

0..*

0..* 0..*

0..*

0..*

0..*

0..*

0..*

1

0..*

1

TUPPC031 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

624C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

many Logical-Components and Physical-Components
that are implemented based on a single Component-Type.
A Physical-Component is associated (during installation)
at the most with one Logical-Component; it is not
associated with any when it is a spare. Similarly, a
Logical-Component is related to at the most one Physical-
Component; it may not be related to any. When a
Physical-Component is installed and gets linked to a
Logical-Component, both the Physical-Component and
Logical-Component must be based on the same
Component-Type.

Logical-Component, Physical-Component, and
Component-Type have Properties. Logical-Component
has zero or more Signals.

The concept of Logical-Components can be extended to
represent other entities in a configuration that may not be
on the facility’s blueprint. Examples of such Logical-
Components are:
 Group of Physical-Components such as a segments

or beamlines
 High-level virtual physics devices that are

implemented in software
Such Logical-Components that do not have a physical

manifestation (i.e. they are not linked to any Physical-
Component) are marked as ‘Abstract’

Attributes and Properties
Attributes of the Logical-Components, Physical-

Components, and Component-Types keep changing. This
is more so during development and commissioning of the
machine, but continues into operations. Also, different
accelerator facilitates would have their own attributes.
Changing the database schema often results in a large
effort to modify the related services and/or applications.
So only the core attributes are kept in the schema, and the
rest are stored as properties (key-value pairs).

Component Relationships
Two Logical-Components can be associated with each

other through various relationships. Relationships are also
generalized, the same way as Logical-Components are.
We do not identify or represent specific relationships in
the logical model. They are represented by Component-
Relationship entity. The relationships are assumed to be
binary.

A Physical-Component may be composed of other
Physical-Components. This relationship is represented by
a one-to-many association (UML Composition).

Note that the assembly relationship among components
(say a cryomodule and its cavities and solenoids) is
duplicated at both as-designed (among Logical-
Components) and as-built (among Physical-Components)
layers. During installation (uninstallation), the Logical
and Physical Components have to be associated
(disassociated) accordingly

PHYSICAL MODEL
Relational Model has been chosen for realization of

Proteus’ database. Proteus’ database objects (tables,
relationships, views etc) are described in [6].

Data Types
As explained in the previous section, attributes are

represented by key-value pairs. A side-effect of this
choice is that attributes cannot be associated with specific
DBMS data types. Because attributes are represented with
key-values pairs, all the values have to be of the same
type. It is possible to have a fixed number of data types
associated with each property but it is not efficient or
workable. So it was decided to have attribute values as
generic type that can accommodate large values. MySQL
provides two such data types: BLOB and TEXT (with
their ‘larger’ versions). Currently, TEXT is used but it
may be changed in the future

Component Relationships
The relationships among Logical-Components are

implemented through two tables: component_relation and
component_pair. The ‘component_relation’ table stores
information about the relationships: their IDs, names etc.
The ‘component_pair’ table links two Logical-
Components with a relationship. It has three (foreign-key)
fields; two containing Logical-Component primary keys,
and one containing relationship primary key (from
component_relation).

The hierarchical composition relationship among
Physical-Components is implemented by a field in the
Physical-Component that points to the primary key of the
parent Physical-Component.

IMPLEMENTATION
Proteus has four major components (Figure 4): Data

Manager, Web Service, RESTful Service, and V4
Service. The first three run inside a Java EE application
server. The V4 Service runs as a standalone service. The
Data Manager has all the business logic. It collects and
serves data from various sources: Proteus’ Database,
ChannelFinder, and Control System (EPICS). The Data
Manager uses PVManager [7] to access Control System.
It also manages authorization, transactions, and
concurrency. The V4 Service is currently a prototype.

Technologies
Most of Proteus, excepting the V4 Service, is written

using Java EE technologies. At FRIB, we have used
Glassfish as the application server, MySQL as the DBMS,
and Apache as the web server.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC031

Data Management and Processing

ISBN 978-3-95450-139-7

625 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 4: Proteus implementation.

Figure 5 shows a screenshot of Proteus’ web interface.
The component tree is on the left, and the details of the
selected component on the right, including its field-
curve. Figure 6 shows the control signals (PVs) associated
with a component and their live values.

Figure 5: Components and measurements.

Figure 6: Component and signals.

RELATED WORK
Several systems based on an integrated database have

been developed to manage the data associated with an

EPF [8][9][10][11][12]. Proteus is unique in its scope,
architecture, data model, services, and interfaces.

CONCLUSION
Proteus is an information service to manage the

configuration data of an EPF during design,
commissioning, operation, and maintenance. We have
described its architecture, data model, implementation,
and interfaces. It is being used at FRIB, and is available
for download from [13]. Even though it is not yet ready
for production use by other labs, early adaptors and
developers may try it.

We are currently working on adding authorization and
calibration to Proteus, expanding the RESTful interface,
and improving the V4 service.

AKNOWLEDGEMENTS
We would like to thank the EPICS V4, IRMIS,

ChannelFinder [14], and PVManager teams for their
suggestions and support. We would like to especially
thank Don Dohan for his insights into accelerator facility
concepts.

REFERENCES
[1] DISCS, http://discs.openepics.org
[2] V. Vuppala et al., “Distributed Information Services

for Control Systems”, ICALEPCS 2013, San
Francisco, 2013, in press.

[3] DISCS Handbook,
http://discs.openepics.org/documentation

[4] R. Fielding, “Architectural Styles and the Design of
Network-based Software Architectures”, Ph.D.
Dissertation, University of California, Irvine, 2000.

[5] EPICS V4, http://epics-pvdata.sourceforge.net/
[6] Configuration Module Schema Design,

http://discs.openepics.org/configuration
[7] PVManager, http://pvmanager.sourceforge.net
[8] IRMIS: Integrated Relational Model of Installed

Systems, http://irmis.sourceforge.net
[9] J. Bobnar and K. Žagar, “BLED: A Top-Down

Approach to Accelerator Control System Design”,
ICALEPCS 2011, Grenoble, France, 2011, pp. 537-
539.

[10] Z. Zaharieva et al, “Database foundation for the
configuration management of the cern accelerator
controls systems”, ICALEPCS 2011, Grenoble,
France, pp 48-51

[11] T. Larrieu et al, “Design and implementation of the
cebaf element database”, ICALEPCS 2011,
Grenoble, France, 2011, pp 157-159.

[12] D. Beltran et al, “ALBA control & cabling
database”, ICALEPCS 2009, Kobe, Japan, 2009, pp.
423-425.

[13] DISCS Configuration Module,
http://discs.openepics.org/configuration

[14] ChannelFinder, http://channelfinder.sourceforge.net/

TUPPC031 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

626C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

