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Abstract 
There is need for an integrated information system that 

manages the data and computational-logic used by an 
experimental physics facility (EPF) during its design, 
construction, commissioning, and operation. Such a 
system can be used to manage design lattices, model 
them, run what-if scenarios, tune the beams, troubleshoot, 
manage calibration data, maintenance records, alignment 
information and quality metrics, and generate reports for 
funding or regulatory agencies. A critical component of 
such a system is the configuration database. It manages 
devices, their layout, measurements, alignment, 
calibration, signals, and inventory. In this paper we 
describe development of such a component. We describe 
its architecture, database schema, services, and graphical 
and programming interfaces.    

INTRODUCTION 
An integrated information system is critical for the 

design, commissioning, operation, and maintenance of an 
EPF. Distributed Information Services for Control 
Systems (DISCS) [1][2] is a framework and 
implementation of such a system. It is comprised of a set 
of cooperating services and applications, and manages 
data such as machine configuration, lattice, 
measurements, alignment, cables, machine state, 
inventory, operations, calibration, and design parameters. 
It also includes computational services such as Online 
Model and Unit Conversion. DISCS is a collaborative 
effort of BNL, Cosylab, ESS, FRIB, and IHEP. 

To enable development by multiple, dispersed, and 
independent teams DISCS has been divided into several 
domains [3]. Each domain is responsible for a portion of 
the system, and provides tools and services to manage the 
associated data and logic. One of DISCS' core service is 
the Configuration Domain. It is concerned with the 
configuration of the accelerator facility: the components, 
their properties, design parameters, measurements, 
calibration, maintenance, layout, and relationships among 
components. Proteus is an implementation of the 
Configuration Domain. It is being developed and used at 
the Facility for Rare Isotope Beam (FRIB). 

Architecture 
The basic architecture for DISCS is shown in Figure 1.  

It consists of three layers: Data, Service, and Application. 
Data Layer represents all the data sources: managed, 
unmanaged, structured, and unstructured. Service Layer is 

composed of services. A service is a reusable software 
component that implements a set of business functions, 
has a formal and documented interface, and can be 
located and accessed through standards-based 
communication mechanisms.  In our case, a service can 
be thought of as a software process that implements 
controls or physics related logic, and provides high-level 
data structures to the user through REST-based [4] and 
PVaccess [5] protocols. Application Layer consists of the 
software tools or components that present the information 
to the user.  
 

 

Figure 1: Applications, services, and data.   

Proteus, just like all of DISCS’ modules, is composed of 
a database, one or more services, applications to manage 
and load data, and an Application Programming Interface 
(API). 

CONCEPTUAL MODEL 
In this and the following two sections we describe 

Proteus’ data model. A component is any entity the 
accelerator facility’s configuration: magnet, power 
supply, cavity, rack, room, controller etc. Components 
can be looked at in different ways, and have different 
kinds of information associated with them: design data, 
measurements, test data, alignment information, physical 
characteristics etc. For our modelling concerns, we define 
two kinds of components:  

1. Physical-Component: This represents physical 
entities; things that exist in the real world. A 
physical-component has identifiers that can identify 
it, and has attributes that can be measured and 
calibrated. For example, the cavity with part 
number T30802-MDE-0008 that was manufactured 
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by Jefferson Lab is a physical-component. A 
physical-component has attributes such as 
calibration records, measurements, traveler data, 
manufacturer model etc 

2. Logical-Component: It represents the entities that 
exist on the blueprint or configuration (layout) of 
the Accelerator facility. A small part of FRIB’s 
configuration is shown in Figure 2; the various 
elements in the figure are Logical-Components. For 
example, devices LS1_CA01:CAV1_D1093 and 
LS1_CA01:CAV2_D1101 are Logical-
Components. 

Components, both physical and logical, are classified 
into types. A Component Type represents a generic 
component and its design. For example, there can be 
several horizontal electrostatic dipoles with the same 
characteristics i.e. they are interchangeable; in such case 
the common characteristics are denoted by a Component 
Type, ‘Horizontal Electrostatic Dipole Type I’.  A 
Component Type is a conceptual entity; Physical 
Components are its manifestation in the real world, and 
Logical Components are the manifestations on the EPF 
layout. Component types have a hierarchy. For example, 
QM1 is a quadrupole which is a magnet. 

These concepts are illustrated in Figure 2. Cavity-A is a 
Component-Type; it has attributes such as design 
parameters, CAD drawings etc. The cavities 
LS1_CA01:CAV1_D1093 and LS1_CA01:CAV2_D1101 
are Logical-Components on FRIB’s LINAC Segment #1 
at positions 1093 and 1101 respectively. They have 
attributes such as distance from the source, optical 
properties etc. However, they share the design parameters 
and CAD drawings of the Component Type, Cavity-A.  
At the bottom of the figure, the cavity with serial number 
T30802-MDE-0008 is a Physical-Component. It also 
shares its design attributes with the Component Type 
Cavity-A. It can be installed at either position 1093 or 
1101 of the LINAC segment #1. Let us say it is installed 
at position 1101; it now represents the Logical-
Component LS1_CA01:CAV2_D1101. But at a later 
date, it can be moved and installed at position 1093 to 
represent the Logical-Component 
LS1_CA01:CAV1_D1093. 

 

Figure 2: Logical and physical components. 

Physical-Components form the inventory. Physical-
components that are not installed (i.e. not linked to a 
Logical-Component) are the spares. A physical 
component is a real-world entity, a component type is its 
design, a logical component is its configuration entity 
(and an element is its simulation).  

LOGICAL MODEL 
There are two ways to model components:   
1. A class or entity type per Component-Type. There 

will be several entity types: Magnet, Cavity, Power 
Supply, Segment etc. Each entity type will be 
mapped to its physical representation (tables in 
Relational Model). 

2. An object (or entity instance) per Component-Type. 
There will be three entity types: one each for 
Logical-Components, Physical-Components, and 
Component-Types. 

The problem with the first approach is that it will result 
in too many entity types and they keep on growing, which 
will require changes to the schema. The second approach 
solves this problem by having a single entity type for all 
Logical (Physical) components. But how to represent the 
different attributes of the various real-world component 
with one entity type? It is inefficient and sometimes 
impossible to associate all the attributes with one entity 
type. A solution to this is to have the attributes as 
Properties (Key-Value pairs). Based on the component 
type, an entity instance will have different properties 
associated with it.  With this approach, associating 
entities (JOIN operation in Relational Model) based on 
attribute-values will be inefficient, and may lead to 
performance degradation. After analyzing the pros and 
cons of the two approaches, we have chosen the second 
method. 

 

 

Figure 3: Logical model (partial). 

Figure 3 shows the logical model of the database. A 
Logical-Component is based on exactly one Component-
Type. Similarly, a Physical-Component is also based on 
exactly one Component-Type. However, there can be 
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many Logical-Components and Physical-Components 
that are implemented based on a single Component-Type.  
A Physical-Component is associated (during installation) 
at the most with one Logical-Component; it is not 
associated with any when it is a spare. Similarly, a 
Logical-Component is related to at the most one Physical-
Component; it may not be related to any. When a 
Physical-Component is installed and gets linked to a 
Logical-Component, both the Physical-Component and 
Logical-Component must be based on the same 
Component-Type.  

Logical-Component, Physical-Component, and 
Component-Type have Properties. Logical-Component 
has zero or more Signals. 

The concept of Logical-Components can be extended to 
represent other entities in a configuration that may not be 
on the facility’s blueprint. Examples of such Logical-
Components are: 
 Group of Physical-Components such as a segments 

or beamlines   
 High-level virtual physics devices that are 

implemented in software 
Such Logical-Components that do not have a physical 

manifestation (i.e. they are not linked to any Physical-
Component) are marked as ‘Abstract’ 

Attributes and Properties 
Attributes of the Logical-Components, Physical-

Components, and Component-Types keep changing. This 
is more so during development and commissioning of the 
machine, but continues into operations. Also, different 
accelerator facilitates would have their own attributes. 
Changing the database schema often results in a large 
effort to modify the related services and/or applications. 
So only the core attributes are kept in the schema, and the 
rest are stored as properties (key-value pairs). 

Component Relationships 
Two Logical-Components can be associated with each 

other through various relationships. Relationships are also 
generalized, the same way as Logical-Components are. 
We do not identify or represent specific relationships in 
the logical model. They are represented by Component-
Relationship entity. The relationships are assumed to be 
binary.  

A Physical-Component may be composed of other 
Physical-Components. This relationship is represented by 
a one-to-many association (UML Composition). 

Note that the assembly relationship among components 
(say a cryomodule and its cavities and solenoids) is 
duplicated at both as-designed (among Logical-
Components) and as-built (among Physical-Components) 
layers. During installation (uninstallation), the Logical 
and Physical Components have to be associated 
(disassociated) accordingly 

PHYSICAL MODEL 
Relational Model has been chosen for realization of 

Proteus’ database. Proteus’ database objects (tables, 
relationships, views etc) are described in [6].   

Data Types 
As explained in the previous section, attributes are 

represented by key-value pairs. A side-effect of this 
choice is that attributes cannot be associated with specific 
DBMS data types. Because attributes are represented with 
key-values pairs, all the values have to be of the same 
type. It is possible to have a fixed number of data types 
associated with each property but it is not efficient or 
workable. So it was decided to have attribute values as 
generic type that can accommodate large values. MySQL 
provides two such data types: BLOB and TEXT (with 
their ‘larger’ versions). Currently, TEXT is used but it 
may be changed in the future 

Component Relationships 
The relationships among Logical-Components are 

implemented through two tables: component_relation and 
component_pair. The ‘component_relation’ table stores 
information about the relationships: their IDs, names etc. 
The ‘component_pair’ table links two Logical-
Components with a relationship. It has three (foreign-key) 
fields; two containing Logical-Component primary keys, 
and one containing relationship primary key (from 
component_relation).  

The hierarchical composition relationship among 
Physical-Components is implemented by a field in the 
Physical-Component that points to the primary key of the 
parent Physical-Component. 

IMPLEMENTATION 
Proteus has four major components (Figure 4): Data 

Manager, Web Service, RESTful Service, and V4 
Service.  The first three run inside a Java EE application 
server. The V4 Service runs as a standalone service. The 
Data Manager has all the business logic. It collects and 
serves data from various sources: Proteus’ Database, 
ChannelFinder, and Control System (EPICS). The Data 
Manager uses PVManager [7] to access Control System. 
It also manages authorization, transactions, and 
concurrency. The V4 Service is currently a prototype.  

Technologies 
Most of Proteus, excepting the V4 Service, is written 

using Java EE technologies. At FRIB, we have used 
Glassfish as the application server, MySQL as the DBMS, 
and Apache as the web server.  
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Figure 4: Proteus implementation. 

Figure 5 shows a screenshot of Proteus’ web interface. 
The component tree is on the left, and the details of the 
selected component on the right, including its field- 
curve. Figure 6 shows the control signals (PVs) associated 
with a component and their live values.  

 

 

Figure 5: Components and measurements. 

 

 

Figure 6: Component and signals. 

RELATED WORK 
Several systems based on an integrated database have 

been developed to manage the data associated with an 

EPF [8][9][10][11][12]. Proteus is unique in its scope, 
architecture, data model, services, and interfaces.  

CONCLUSION 
Proteus is an information service to manage the 

configuration data of an EPF during design, 
commissioning, operation, and maintenance. We have 
described its architecture, data model, implementation, 
and interfaces. It is being used at FRIB, and is available 
for download from [13]. Even though it is not yet ready 
for production use by other labs, early adaptors and 
developers may try it. 

We are currently working on adding authorization and 
calibration to Proteus, expanding the RESTful interface, 
and improving the V4 service. 
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