
EXPERIENCE IMPROVING THE PERFORMANCE OF READING AND
DISPLAYING VERY LARGE DATASETS*

Ted D'Ottavio, Bartosz Frak, John Morris, Seth Nemesure
BNL, Upton, New York, U.S.A.

Abstract
There has been an increasing need over the last 5 years

within the BNL accelerator community (primarily within
the RF and Instrumentation groups) to collect, store and
display data at high frequencies (1-10 kHz). Data
throughput considerations when storing this data are
manageable. But requests to display gigabytes of the
collected data can quickly tax the speed at which data can
be read from storage, transported over a network, and
displayed on a users computer monitor. This paper reports
on efforts to improve the performance of both reading and
displaying data collected by our data logging system. Our
primary means of improving performance was to build a
Data Server – a hardware/software server solution built to
respond to client requests for data. Its job is to improve
performance by 1) improving the speed at which data is
read from disk, and 2) culling the data so that the returned
datasets are visually indistinguishable from the requested
datasets. This paper reports on statistics that we've
accumulated over the last two years that show improved
data processing speeds and associated increases in the
number and average size of client requests.

INTRODUCTION
Over the last three years, we have put substantial effort

into improving the speed at which we can read and
display logged data. The need for this improvement has
resulted from a huge increase in the amount of data that
has been logged (8 TB in 2009 to over 100 TB in 2013)
and a subsequent increase in the amount of data users
need to view with each display request.

The work reported here should be considered a follow-
up to work reported in a previous ICALEPCS paper titled
“Improving Data Retrieval Rates Using Remote Data
Servers” presented in 2011 [1]. That paper describes the
construction and early testing of a specialized server,
which we call a Data Server, designed to improve the
processing and delivery of logged data. Since that first
paper was written, we have begun to use the Data Server
operationally and can now report on usage and
performance data collected during the most recent
operational time period of our RHIC collider.

As described in the 2011 paper, the Data Server is an
enterprise grade middleware application server based on
Java EE6 and Glassfish 3.1. It communicates with clients
via standard HTTP protocols and has a high speed
connection to the file system holding the logged data.
Requests to the server from our logging display program,
called LogView, are split up and distributed to 8 separate
modules that read and process the logged data, which is
then returned to the client.

The client does not receive the full set of logged data
requested, but a culled dataset designed to be virtually
indistinguishable to the user on a standard scatter plot.
This allows requests for tens or hundreds of millions of
data points to be reduced to culled datasets consisting of
20 thousand points. All of this makes it possible to read,
transport and display huge amounts of logged data in a
few seconds. A visual representation of this process and
its benefits compared to a client reading data directly is
shown below in Figure 1.

 Figure 1: Benefits of using an intermediate Data Server
vs. reading and displaying data directly from disk.

RESULTS
We began using the Data Server operationally in 2012.

Our LogView data viewer was modified with a menu
option that determined how the Data Server was to be
used. The “Auto” default option left it up to the program
to determine whether to use the Data Server or not.
LogView was then programmed to use the Data Server for
high volume requests and to read data directly from disk
for low volume requests. Options for using the Data
Server “Always” or “Never” are also available. These
options proved useful in determining how to transition the
Data Server into our system and helped to diagnose
problems as they occurred.

Starting in late 2012, we began measuring and storing
performance data for each request to view logged data. If
LogView read the data directly, it recorded the size of the
data collected and the time it took to read and display the
data. If the request was sent to the Data Server, the server
stored the same information. As our logging system is
heavily used, we quickly amassed a lot of performance
data. Data for a 5 month time period from March through
July of 2013 (our most recent RHIC running period) is
shown in Table 1.
 __

Work supported by Brookhaven Science Associates, LLC under Contract
No. DE-AC02-98CH10886 with the U.S. Department of Energy.

TUPPC034 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

630C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing

 Table 1: Logged Data Display Statistics
 Client

Direct
to Disk

Client via
Data Server
to Disk

Client via
Data Server
to Cache

Total Number of
Data Requests

75K 22K 1.1M

Total Amount of
Data Requested

0.18 TB 2.4 TB 11.8 TB

Average
Processing Time

4.6 sec 3.7 sec 1.2 sec

Average Amount
of Data Requested

6.4 MB 133 MB 92 MB

Average Data
Processing Speed

3.4
MB/sec

61
MB/sec

285
MB/sec

DISCUSSION
Table 1 shows three columns of data. The methods

used to collect and display the data represented by the
three columns is described below.
• Client Direct to Disk – This column represents data

requests that were completely satisfied by our
LogView client. That is, LogView read all of the
data directly from disk, stored it in memory, then
displayed a culled dataset to the user.

• Client via Data Server to Disk – Data requests to
LogView were routed to the Data Server, which read
the data from disk, culled the data, and returned the
culled dataset to LogView for display.

• Client via Data Server to Cache – Data requests
were routed to the Data Server, which retrieved the
data from its memory cache, culled the data, and
returned it for display. These usually represent client
requests to zoom into previously displayed datasets.

As can be seen from the data in Table 1, LogView

satisfied about three times as many requests itself as it
sent to the Data Server, but the average request size was
much smaller (6.4 MB vs 133 MB). This was primarily
due to LogView automatically routing only large data
requests to the Data Server. This was an attempt to make
sure the Data Server was not overloaded with requests
that could easily be satisfied without it.

More importantly, this data shows that the Data Server
is able to handle much larger requests (average 133 vs.
6.4 MB) while reducing the time the user needs to wait
before the data is displayed (average 3.7 vs. 4.6 secs).
The average data processing speed shows an improvement
of about a factor of 18 (61 vs. 3.4 MB/sec). More detailed
investigations show that processing speeds for both of
these scenarios are dominated by the time it takes to read
the data from disk and that the display times scale fairly

linearly with the size of the data request. Note that the
logged data read during these tests is data that had been
compressed before disk storage (average 4x compression).
The data sizes and rates reported, though, represent sizes
measured after the data had been uncompressed.

Improvements and Future Directions
Over the last two years, we have made a couple of

noteable additions to the Data Server. We added the
capability to filter data requests based on machine-
specific contexts such as “only return data taken when the
RHIC collider was filled with beam” or “only return data
taken when the collider was ramping”, etc. We also
added a second, identical Data Server to improve
performance and reliability, with a proxy server receiving
the data requests and routing them to the least busy Data
Server. A java client interface was also constructed so
that our java-based applications could also read logged
data via the Data Server.

Although we are very happy with the performance
gains we have achieved with the Data Server, if history is
any guide, it won’t be long before we will need even
higher performance. One promising approach is probably
contained within the data shown in the third column of
Table 1. Note how much better the performance of the
Data Server is if the data it is reading is already available
in its memory cache (285 vs. 61 MB/sec). So getting the
data off disk is clearly a significant bottleneck.
Improvements in this area can be made by using a more
distributed data storage and processing approach, by using
improved network speeds, and/or by storing more data in
static RAM memory.

SUMMARY
The speed at which large amounts of logged data can be

read and displayed can be signficantly improved by
routing these requests to a server specifically designed to
1) read the data quickly, and 2) return an intelligently
culled dataset to the client for display. A server of this
type used operationally at BNL over the last year has
improved performance by about a factor of 18, keeping
the time to read and display requests of hundreds of
megabytes of data to a few seconds.

REFERENCES
[1] T. D’Ottavio, B. Frak, S. Nemesure, and J. Morris,

“Improving Data Retrieval Rates Using Remote Data
Servers”, ICALEPCS (2011), MOMAU002,
http://accelconf.web.cern.ch/accelconf/icalepcs2011/p
apers/momau002.pdf

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC034

Data Management and Processing

ISBN 978-3-95450-139-7

631 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

