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Abstract
The Nomad instrument control software of the Institut

Laue-Langevin  (ILL)  is  a client  server  application.  The
communication  between  the  server  and  its  clients  is
performed  with  CORBA,  which  has  now  major
drawbacks  like the lack of  support  and a slow or non-
existing  evolution.  The  present  paper  describes  the
implementation  of  the  recent  and  promising  ZeroMQ
technology in  replacement  to  CORBA.  We present  the
prototype of a simple RPC built on top of ZeroMQ and
the performant Google Protocol Buffers serialization tool,
to  which  we add a  remote  method dispatch  layer.  The
final project will also provide an IDL compiler restricted
to  a  subset  of  the  language  so  that  only  minor
modifications  to  our  existing  IDL  interfaces  and  class
implementations  will  have  to  be  made  to  replace  the
communication layer in NOMAD.

INTRODUCTION
Nomad  has  been  designed  10  years  ago  as  a  client

server application where the server is written in C++ to
have a direct access to the C driver layer  and the main
client is written in Java to have a portable and reactive
GUI application. Some other client applications have been
developed and, among them, we can cite the Nomad Web
Spy and the Nomad Monitor [1]. At the time of the initial
design, CORBA [2] was the best middleware to provide
interoperability between a wide range of languages and
systems  and  it  was  logically  chosen  for  the
communication  between  the  server  and  the  clients  in
Nomad.  The  Nomad  server  currently  is  based  on
omniORB and the clients on JacORB.

The  CORBA  standard  offers  lots  of  features  and
specifies the implementation of an Object Request Broker
(ORB). The project was ambitious and enabled to write
distributed  applications  where  network  issues  could  be
“forgotten”. Indeed the programmer can manage CORBA
objects  almost  like  normal  objects  and  write  complex
client server interactions.  These advantages can become
disadvantages  because  this  can  increase  the  network
communications  as  the server  can become a  client  and
vice versa. The CORBA component is a monolith which
offers so much possibilities that when a problem occurs, it
is  difficult  to  know  where  to  begin.  From  our  own
experience  we  had  trouble  with  the  C++  binding.  For
example we could not find any documentation on how to
ensure that a CORBA object was still alive at the end of a
client  call.  Moreover  from  the  design  point  of  view,
CORBA  is  intrusive  as  any  object  managed  by  the

CORBA  framework  must  inherit  a  CORBA  generated
class – stub for the client side, and skeleton for the server
side.  This  constraint  does  not  help  to  design  clear
applications where  a large  part  of  code  can  depend on
CORBA, although a better design is to restrict the use of
CORBA  to  the  communication  layer.  Some  other
shortcomings are exposed in Ref. [3].

In Nomad we need to have a strong relation between
the server  and the GUI client.  We have numerous IDL
operations defined in many files. On one hand, the client
to server operations mainly include the hierarchical data
model, e.g. the controllers and drivers hierarchy and the
composite  control  sequence  building  [1].  These  request
messages must be synchronous as the client is expecting a
response result. On the other hand, the Nomad server to
GUI client operations mainly include the execution states
for  the  sequencer  and the  commands of  the  controllers
and  drivers.  They are  called  events  and  some of  them
could be asynchronous but with reception guarantee. Only
a few of them could be asynchronous without reception
guarantee.  Notice  that  a  simplification  of  the  CORBA
operations design could be considered.  Indeed  once the
CORBA architecture is set up, it is very easy to add a new
operation.

CORBA  implementations  are  now  declining  and  a
bunch of new technologies emerged in recent years as the
need  for  large  distributed  systems  is  increasing  and
CORBA  did  not  manage  to  impose  its  architecture.
Nomad contains many C++ and Java implementations of
abstract  methods  defined  from IDL  files.  However  the
Nomad application has not a large number of clients. In
that conditions, how can we replace CORBA in Nomad
with the minimum amount of work?

EXISTING SOLUTIONS
The  existing  middleware  solutions  can  be  classified

into message-oriented, data-oriented, service-oriented and
object-oriented.  CORBA  is  an  object-oriented
middleware.  By  simplifying,  data-oriented  and  service-
oriented middlewares are built on top of a message layer
and  object-oriented  middlewares  are  built  on  top  of  a
service layer.

The closest solution to CORBA is Ice [4] developed by
Michi Henning, a CORBA expert who rewrote an ORB
implementation by taking into account all the drawbacks
of  CORBA  [5].  The  Slice  language  is  very  close  to
CORBA  IDL  which  would  imply  a  minimum  code
porting.  However  Ice  has  still  a  monolith  architecture,
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does not seem to have a large community and it is not a
standard.  Replacing  CORBA by Ice  would  introduce  a
dependency to a single company.

Currently there is no other object-oriented middleware
available. Other solutions are exposed in Ref. [3] among
which ZeroMQ [6] is considered the best.  ZeroMQ has
been  already chosen  by CERN and ESRF for  TANGO
[7]. ZeroMQ benefits from a large active community, it is
multi-language  mainly  based  on  a  C  library  bound  to
different languages. We can find the project jeroMQ [8]
that is the rewriting of the C library in Java. This project
is  useful  since  some  Java  contexts  do  not  permit  the
binding to  a  C library (Java  Web Start,  Androïd,  etc.).
Moreover  ZeroMQ  has  good  performances.  In  the
following,  we  will  consider  the  use  of  ZeroMQ  in
replacement of CORBA in Nomad.

PROTOTYPE SOLUTION
ZeroMQ  provides  an  “intelligent”  message  layer  but

cannot  replace  immediately  CORBA  in  Nomad.  One
solution would be to transform all the IDL operations into
ZeroMQ messages but the number of operations and the
amount  of  code  to  rewrite  to  define  synchronous
messages discards this solution. CORBA standard is very
large and we only use a small part in Nomad. Thus we
can imagine to write a simple ORB based on ZeroMQ that
implements  a  restriction of  the  CORBA functionalities.
The  restrictions  include  a  subset  of  the  CORBA  IDL
language and a simple API to associate server objects to
client proxies. As a consequence we will be able to reuse
our class design and minimize the code porting.

Object-oriented services zRI

Marshalling/Unmarshalling Protocol Buffers

Message transport ZeroMQ

Figure 1: The ORB layers in zRI.

To realize the prototype we need a performant multi-
language  marshalling/unmarshalling  library  that  will  be
hidden from the user. We can cite Message Pack [9], a
library  based  on  binary  JSON messages,  Thrift  [10]  a
library provided by Facebook and Protocol Buffers [11] a
library from Google. By comparing the benchmarks [12],
we chose Protocol Buffers for the large community and
its  performance.  As  the  marshalling/unmarshalling
process  will  be  hidden  from  the  user,  the  lack  of
readibility  and  extensibility  cited  as  disadvantages  [13]
are not a problem.To summarize, we define the prototype

project zRI (ZeroMQ Remote Invocation) that is the third
layer of a simple ORB (See Figure 1). 

We write a simple object layer that is close to a service-
oriented  solution  –  we  do  not  allow  the  references  to
objects in our restriction of the CORBA IDL language.
The  project  can  be  seen  as  the  implementation  of
synchronous  typed  messages  and  an  automation  of  the
marshalling/unmarshalling  code  which  can  be  very
verbose.  Moreover  it  depends  on  relatively  small
components that makes them easier to replace.

The project includes:

• zRIg : an IDL compiler (restricted);

• zRIcpp : the runtime library for C++;

• zRIj : the runtime library for Java.

The IDL compiler is designed to be extensible, so that
the zRI project may not be restricted to the ILL and could
be provided to the community as an open-source project.
We implement  the prototype  to test  the viability of the
solution.

IMPLEMENTATION
In this section we will present the execution of a remote

method  call  in  zRI  and  then  present  the  compiler
implementation.

Execution
We take the minimal IDL interface A as example:

interface A {

double foo(in short a, in boolean b);

};

The compiler zRIg generates the client stub class  A in
Java and the server skeleton class A (abstract) in C++ for
which we provide a simple implementation AImpl. Before
requesting any remote method call:

• the zRI server is started on the server side with
an address;

• the C++ AImpl object is bound to a name;

• the Java A stub object is resolved to the AImpl
object by its address and its name.

The Figure 2 shows the sequence diagram of the client
synchronous call of a A.foo.
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Figure 2: Sequence diagram of a synchronous client call.

When invoking foo, the stub object A opens a socket of
type REQ (ZeroMQ type) and sends the serialization of a
RemoteMethodRequest  (not shown) object  that contains
the object name, the method name and the serialization of
a A_foo_Args object containing the arguments a and b.
The  reception  of  the  message  awakes  the  server
RemoteMethodDispatcher  object  which  processes  the
request  by forwarding the call  to the real  AImpl  object
after having parsed the content of the message. Note that
a socket of type REP is open when the server starts. Then
the  AImpl  object  parses  the  string  arguments  into  an
A_foo_Args object, calls the real method AImpl::foo and
serializes  the  result  with  an  A_foo_Result  object.  The
RemoteMethodDispatcher  object  then  sends  the  result
message that is parsed by the client object A and returned
to the client.

Note that the implementation of the zRI server is not
complete,  e.g.  the  process  of  request  in  parallel  is  not
implemented yet.

Compilation
The zRIg compiler written in Java generates the stub

and  skeleton  classes  as  well  as  the  serialization  helper
classes from the IDL file.

Figure 3: zRIg Compiler workflow for the generation of a
Java stub class.

Figure 3 shows an example of the workflow diagram.
First,  the  Abstract  Syntax  Tree  (AST)  is  built  with  a
parser generated by ANTLR 3 [14] from a CORBA IDL

grammar  that  we  found  on  the  web  site  (slightly
modified).  The  AST  is  transformed  into  a  Java  data
structure listing the definitions of the file “A.idl”, that is
easier  to  manipulate  for  the  verification  and  the
generation phases. The ANTLR parser checks the lexical
and  syntaxic  errors  and  we  check  the  semantics  errors
including  name  redefinitions,  name  ambiguities,  etc.
From  the  definition  data  structure,  we  generate  a
temporary Protocol  Buffers  file  “A.proto”  and “A.java”
for  the  stub  class.  Then  we  use  the  compiler  protoc
provided by Protocol  Buffers  to compile “A.proto”  and
generate  the  helper  classes  A_foo_Args  and
A_foo_Result  used  by  the  class  A  to  serialize  the
arguments and parse the result of a method call.

Note  that  Protocol  Buffers  defined  its  own  IDL
language  called  proto  to  describe  the  messages  to
marshall  and unmarshall.  The  proto language  allows to
define  message  data  structures  that  are  composite  and
typed. We defined a mapping between the IDL types and
the proto types so that we can generate the A_foo_Args
message with the arguments of foo as attributes, and the
A_foo_Result message with the result of foo as attribute.

The zRIg compiler was defined to be easily extended.
We based our generation of code on XML code templates
easy to modify rather than changing and recompiling Java
classes. We currently implemented the following CORBA
IDL features:  modules,  operations with basic types  and
sequences,  typedef.  To replace  CORBA in Nomad:  the
following  features  are  missing:  struct,  interface
inheritance, exceptions, preprocessor. New functionalities
should  be  implemented  by  extending  the  base  class
Definition of the zRIg framework. 

PERFORMANCE
In Nomad, data transfer can become a bottleneck as we

need  to transfer  from the server  quite  large  acquisition
data arrays (> 1 Mo) to be rendered in the GUI at quite
high frequencies. We selected the ZeroMQ and Protocol
Buffers  for  their  performance.  To  compare  the  zRI
performance  with  our  current  CORBA  architecture
(omniORB 4.1.4 and JacORB 2.3.1) we defined a simple
IDL interface:

interface Sequence {

typedef sequence<double> dseq;
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dseq get(in long size);

};

We implemented Sequence in both CORBA and zRI so
that  only a data transfer  is  made and we compared  the
time of a client call for different message sizes. The client
and  the  server  run  on  the  same  machine  (Intel  Xeon
2.40GHz,  4GB RAM, Linux  Suse  11).  We present  the
resulting times in Figure 4.
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2 MB 1.5 1.5 12 2 5 20 5 11

8 MB 6.5 7 45 6 10 75 20 45

80 MB 62 72 870 59 62 1125 250 550

Figure 4: Comparison of zRI with CORBA for different
array sizes. Time in ms.

The results show that  CORBA is almost twice faster
than zRI until the size of 8 MB. In zRI, the bottleneck is
the Java unmarshalling that takes itself the total time of
CORBA.  For  80  MB,  the  Java  unmarshalling  time  is
increasing drastically. Note that Protocol Buffers was not
designed  for  large  arrays.  We  also  compared  Protocol
Buffers  unmarshalling  performance  with  MessagePack
which confirmed to be even almost twice slower.  The C+
+  copy  and  Java  copy  occur  because  the  type  of  the
sequence of double in Protocol Buffers is different in zRI
C++ and zRI Java. However those results are satisfying
for the Nomad requirements.

CONCLUSION
The prototype of a simple ORB built upon ZeroMQ and

Protocol  Buffers  is  a  success  and  implementing  the

required features for replacing CORBA in Nomad should
not be an issue. Some real tests will have to be performed.
CORBA and ZeroMQ can live together and we will first
replace  a  small  part  of  the  Nomad  client  server
communication by zRI.

The zRI project  goes  beyond the  ILL  and is  a  good
candidate for open-source release and be opened for other
people  or  organization  who  either  want  to  replace
CORBA or implement  new features.  An ORB provides
interesting  features,  and  it's  not  because  CORBA  is
declining that the ORB concept is obsolete.
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