
FLEXIBLE DATA DRIVEN EXPERIMENTAL DATA ANALYSIS
AT THE NATIONAL IGNITION FACILITY*

A. Casey, R. Bettenhausen, E. Bond, R. Fallejo, M. Hutton,
J. Liebman, A. Marsh, T. Pannell, S. Reisdorf, A. Warrick, LLNL, CA 94550, USA

Abstract

After each target shot at the National Ignition Facility
(NIF), scientists require data analysis within 30 minutes
from ~50 diagnostic instrument systems. To meet this
goal, NIF engineers created the Shot Data Analysis (SDA)
Engine that uses the Oracle Business Process Execution
Language (BPEL) platform to configure analyses and
archive results. While this provided for a very powerful
and flexible analysis product, it still required software
developers to create each unique analysis configuration
executed by the SDA engine. As more and more
diagnostics were developed and the demand for analysis
increased, the development team was not able to keep
pace with the rate of change. To solve this problem, the
Data Systems team took the approach of creating a data-
driven framework that allows users to specify the analysis
configuration (analysis routine, inputs and outputs), input
data sources, and results archive destinations as data that
is stored in the database. The creation of this Data Driven
Engine (DDE) has decreased the manpower required to
integrate new analysis and has simplified maintenance of
existing configurations. The architecture and functionality
of the Data Driven Engine will be presented along with
examples.

SHOT DATA ANALYSIS ENGINE
The Shot Data Analysis Engine was first deployed on

NIF [1,2] in 2008. This highly flexible and scalable
analysis framework (Figure 1) features a parallel
architecture that:

 automatically triggers analysis when data
arrives;

 sequences the analysis workflow;
 provisions data from various data sources;
 maps data to analysis functions written in

Interactive Data Language (IDL®) [3]; and
 archives analysis results with their “pedigree” (a

record of the data inputs and analysis software).

The Shot Data Analysis Engine distributed architecture

divides functionality among the following components:
 Analysis Director - sequences the analysis for

each diagnostic;
 Data Mapper - maps data from data sources

(Archive, Calibration, NIF Configuration) to
analysis, and maps analysis results to the
Archive;

 Analysis Server Cluster - executes the analysis
routines.

The original Engine’s scalable, parallel architecture was

accomplished through the use of two key technologies:
(1) message queues with Java messaging that dynamically
schedule and balance analysis tasks across all available
resources — i.e., processes and processors — and (2) a
commercial, industry-standard workflow processor called
Business Process Execution Language (BPEL) [4] that
underlies the Data Mapper component and is used to
orchestrate the analysis and perform a data mapping
function that integrates external data repositories through
Web Services. While distribution through message queues
proved robust and reliable and remains in the architecture,
the BPEL-based Data Mapper has been replaced with the
Data Driven Engine (DDE) to gain more efficiency,
robustness, and maintainability.

OPERATIONAL EXPERIENCE WITH
BPEL

The BPEL product was chosen because it provided a
number of out of the box features that made it very
attractive as the orchestrator of the analysis process. The
first benefit was the relationship between the existing
Archive and the BPEL product. As the Archive is
designed around lower levels of the Web Services stack -
WSDL, SOAP, and WS-Addressing – BPEL naturally fit
into this architecture. We also knew that our analysis
capability and requirements would grow significantly as
more and more diagnostics were deployed in the NIF
target chamber. BPEL was a good match here as the
business logic is expressed in XML which allows for easy
code maintenance in that it is human readable and there is
opportunity to leverage code reuse.

*This work performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. #LLNL-
ABS-631632, # LLNL-CONF-644237

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC072

Experiment Control

ISBN 978-3-95450-139-7

747 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 1: NIF shot-data analysis system block diagram. The data mapping function is highlighted in yellow.

However, as more and more analyses – and thus BPEL
flows - were introduced into the analysis engine, our
primary use pattern began to change. Analysis was
inducing a burst behaviour that was triggering a brief but
significant load on the BPEL system itself. The net effect
was that occasionally BPEL processes would be starved
of resources and workflows would hang, requiring
manual intervention in order for them to complete. As the
analysis engine tends to run in the early hours of the
morning, this can be problematic! While the Data
Systems team was able to tune installation and
configuration parameters to mitigate some of these issues,
specialist knowledge of a BPEL administrator was
necessary to implement these changes and as our use
changed, so did the configuration set up.

-<copy>
<from part="payload"
query="/client:CameraWarpCorrProcessRequest/client:
request/client:iccsTaxon" variable="inputVariable"/>
<to variable="iccsTaxon"/>
</copy>
-<copy>
<from part="payload"
query="/client:CameraWarpCorrProcessRequest/client:
request/client:iccsTaxon" variable="inputVariable"/>
<to variable="taxon"/>
</copy>
-<copy>
<from part="payload"
query="/client:CameraWarpCorrProcessRequest/client:
request/client:dataTaxon" variable="inputVariable"/>
<to variable="dataTaxon"/>
</copy>

Figure 2: A simple sample XML specification for copying
request data into local variables.

As the number of diagnostics increased and more
importantly, the rate of their delivery to the NIF target
chamber increased, we found that that we could not reuse
BPEL XML flows as efficiently as we had first hoped.

Instead of a traditional code reuse model, it was the
processes themselves that were being reused. This meant
that we were very reliant on dedicated BPEL developers
to produce duplicated code. As the initial BPEL flows
were relatively simple, creating the BPEL could be done
in a time efficient manner. However, as the complexity
grew, so did the development time. Eventually,
development of the BPEL processes became the schedule
driver in the analysis development lifecycle.

THE DATA DRIVEN ENGINE
It was at this point in 2011, that the Data Systems team

decided to use the operational experience with BPEL to
reassess the initial assumptions when BPEL was made a
part of the architecture. There were two key findings from
this analysis. The first was that the prime function BPEL
performed in the Shot Data Analysis Engine was a data
mapping function. It was reading an analysis
configuration template and through the use of web service
calls, mapping data from the archive to the template and
passing the resulting analysis configuration file to the
analysis nodes. The second finding was that the Data
Systems team needed a solution that did not require a
dedicated team of coders to support it. The data analysts
themselves had to be able to specify their own data needs.
It was from these two findings that the Data Driven
Engine (DDE) was created.

The DDE is a Java process that functions much like
BPEL. Upon receiving an analysis request, both create the
analysis configuration file and pass it to the analysis
nodes to perform the actual analysis. Both receive results
back from the analysis which they write to the archive.
The difference is that BPEL reads and executes logic from
a complex XML file that has to include its own error
handling, while the DDE executes a reusable Java
framework that incorporates mapping and error handling

TUPPC072 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

748C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

Figure 3: A simple sample DDE specification for copying request data into local variables.

functionality and only requires data from a simple
database table. This approach is easier for a human to
read than XML and is a lot more logical to debug and
troubleshoot. Figures 2 and 3 are excerpts from a sample
XML specification and a DDE data table.

While the BPEL in Figure 2 is simple and readable, it
involves considerable duplication and overhead to
complete the specification and adhere to the XML syntax.
Contrast this with the DDE specification in Figure 3. The
table is a simple source from / assign to relationship. This
format meets both of the key findings. The mapping
function is performed simply and a lot more clearly to the
coder and secondly, as there is no complex XML to write,
the analysts are able to create their own data maps that
easily integrate with analysis routines in the Shot Data
Analysis Engine.

Another advantage is that the DDE does not require the
overhead of processes to achieve code reuse. This,
coupled with the DDE self-regulating threading model,
controls the servicing of analysis and assures that required
resources are available. As a result, the DDE moderates
analysis bursts and does not itself induce burst behaviour
as occurs in the BPEL system.

It must be noted that there are drawbacks with this
system. The DDE data specifications are not a
programming language. The lack of higher level
programming constructs such as loops, conditional
statements etc., can result in complex data specifications
that are not easy to follow months after the original
writing. This significantly affects maintainability.
Another drawback to consider is the cost of developing
the new workflow engine.

THE NEW DDE AND GROOVY
The maintainability issue of the DDE called into

question its long term feasibility as a user friendly
solution. The DDE is certainly simple in concept but if
the resulting specifications are more complicated than the
original XML, the benefit is limited. The assessment of
the team was that the DDE needed to be able to specify
higher level programming constructs such as functions

and that these functions would execute like a macro
within the existing Java based DDE and Archive Viewer
applications. Thus, the requirements became; the macros
would be human readable, be editable by a data analyst
using the Archive Viewer, would have a Java like syntax
and would not require any compilation or development
environment. After evaluating a number of potential
scripting extensions, the Data Systems team settled on
Groovy.

Groovy [5] is an open-source, general-purpose scripting
language that runs on the Java Virtual Machine (JVM)
and, for people with some familiarity with Java, has very
little learning curve.

The incorporation of Groovy java scripting gives the

data analysts the ability to extract complex data
specifications into macro code while keeping basic
mapping in data. Additionally, DDE developers can use
macros to quickly provide needed functionality in real
time without requiring a formal code release.

BENEFITS ANALYSIS
As the DDE evolved in technology, the number of

specifications needed to define the data mapping for a
new analysis was reduced. The original BPEL and DDE
implementations required 4 separate specifications
(Figure 4); Analysis Configuration Template, Archive
Object Definition, Process Logic, and Interface
Specification. While the Process Logic accounted for
most of the effort in terms of schedule, the other 3
elements also contained duplicate information that
presented an opportunity for further simplification.

The latest DDE incarnation requires an interface
definition (where the data is coming from and going to),
the definition of the archive object class, and if necessary,
the process logic of higher level functions.

For an analysis of moderate complexity, based on our
current prototype, this is expected to reduce the time to
integrate a new diagnostic analysis from 15 weeks to
about 6 weeks (Figure 4).

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC072

Experiment Control

ISBN 978-3-95450-139-7

749 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 2: Each iteration of the Data Analysis Engine has
reduced the manpower required to integrate a new
analysis.

SUMMARY
In the field of SW development, the general strategy is

to use COTS products wherever possible in order to
minimize local development effort and to maximize the
capabilities and experience of another development team.

However, there are times when the replacement of
COTS products with custom software yields significant
benefits in terms of tailored functionality that fully meets
the user needs and makes better use of development
dollars.

In migrating from BPEL to the DDE, the Analysis team
at NIF achieved:

1. more efficient re-use of existing capabilities and

functions;
2. simpler, user-specified data mapper

configurations;
3. increased transparency and maintainability of

data mapper configurations;
4. load balancing that handles peak loads

predictably and reliably;
5. less manpower to add a new analysis to the Shot

Data Analysis Engine;
6. fewer dedicated, specialized software

developers.

With the new DDE, the team is expecting to be able to
achieve:

1. greater simplification and maintainability of data
mapper configurations;

2. additional decrease in manpower needed to add a
new analysis to the Shot Data Analysis Engine.

REFERENCES
[1] E. Moses, et al., “The National Ignition Facility: Path

to Ignition in the Laboratory,” Fourth International
Conference on Fusion Sciences and Applications,”
Biarritz, France, September 2005.

[2] The National Ignition Facility Web site,
 https://lasers.llnl.gov
[3] Gumley, L. E., Practical IDL Programming, Morgan

Kaufmann, 2001.
[4] Oracle BPEL Process Manager web site,
 http://www.oracle.com/technetwork/middleware/bpel

/overview/index.html
[5] Groovy web site, http://groovy.codehaus.org/

0

2

4

6

8

10

12

14

16

BPEL DDE New
DDE

M
an

p
o

w
e

r
(W

e
e

ks
)

Data Mapper Technology

Comparison of data
mapper integration

times for a new analysis

Analysis Config
Template

Archive Object
Definition

Process Logic

Interface
Specification

TUPPC072 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

750C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

