
MacspeechX.py MODULE AND ITS USE IN AN
ACCELERATOR CONTROL SYSTEM

Noboru Yamamoto*, J-PARC cener, KEK and JAEA, Ibaraki, JAPAN

Abstract
macspeechX.py[1] is a Python module to accels speech

synthesis library on MacOSX. This module have been
used in the vocal alert system in KEKB[2] and J-
PARC[3] accelerator control system. Recent upgrade of
this module allow us to handle non-English lanugage,
such as Japanese, through this module. Implementation
detail will be presented as an example of Python program
accessing system library.

SPEECH SYNTHESIS IN CONTROL
SYSTEMS

In some control system, alerts to the operators can be
sent as vocal messages. It used be require the special
hardware or software to generate vocal message from
computers in the system.

When we started commissioning of KEKB accelerator,
such an alert system was requested. We picked up:

• speech synthesis library includes as one of
standard libraries on Macintosh OS from Apple.

• Macspeech.py module distributed as one of
standard module with Python programming
Langauge

With these two components, we could build a very low
cost but flexible vocal alert system. This system has been
used in KEKB control system and J-PARC control
system. During the operation of the accelerators, we
needed as little modification in the maing program. On
the other hand changes in the software & hardware
environment, forced us to develop a new python module,
macspeechX.py. This module evolves to current status
following the evolution of software/hardware.

We will describes the evolution of this modules in this
article.

KEKB/J-PARC VOCAL ALERT SYSTEM

The main components of the KEKB/J-PARC vocal
alert system is a macintosh computer and the tiny python
program running on this macintosh. A main task of this
tiny program is simply

1. Wait for UDP packet including plain text from
the control system at multiple upb ports,

2. Pass this message to speech synthesis library.

With additional functionality such as user interface or
selection of voices for specified UDP ports, this program
can fit one or two pages of the paper

While this system running without serious problem
until MacOSX came to the market. In Python on
MacOSX does not includes macspeech.py as a its
components. It means we need to develop our own
solution before old Mac hardware would be replaced by
new hardware which just runs MacOSX.

In the next section, we will see several ways to write
Python module which bridges C/C++ library.

HOW TO WRITE PYTHON EXTENSION
MODULE

There are several ways to prepare python extension
modules which allow access to the existing C-library from
Python.

1. Write a glue module in C and/or C++ using
Python API.

2. Use SWIG to generate a glue code automatically
from a configuration file.

3. Use cython to generate glue module from cython
description of the library.

4. Use ctypes module to develop a glue module in
Python language

5. Use PyObjc, which is available only on
MacOSX and Darwin operating system, for glue
module writen in Python.

__
*noboru.yamamoto@kek.jp

Figure 1: Software overview of KEKB/J-PARC vocal
alert system.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC109

User Interfaces and Tools

ISBN 978-3-95450-139-7

829 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Python C API
Python, also know as CPython[4], defines a set of APIs

to access internal structures of Python interpreter. Python
C modules can be developed using these APIs. KEK
version of EPICS CA[9] module uses this method. It is
most powerfull and efficient way to bridge C/C++ library
with Python. Careful coding is required especially in
multi threaded environment, otherwise you can crash your
system, quite easily.

SWIG(Simple Wrapper Interface Generator)
SWIG[5] is a tool developed by Dave Beazley. It reads

C/C++ header file like description of library and output
files to glue this library to a target language. It support
many script-type languages such as Tcl/Tk, Java, Perl,
Ruby and Python and much more. If you would like to
have integrate your or someone else's library with many
script languages, SWIG can realise it with minimum
effort.

You can start from C/C++ header files as a SWIG input
file and will need to modify it for better integration. You
must pay attension to header files and SWIG
configuration files. You also need to follow upgrade of
SWIG by yourself.

Cython
In cython, you writes Python-like description of C/C++

library. Cython[6] convert it to C/C++ glue codes and
python support modules. Compiled C/C++ glue codes
can be imported from Python interpreter. Cython (not
Cpython) define a language similar to Python but with
type declaration for efficient code generation.

ctypes
"ctypes”[7] is now one of Python standard module. It

allows access to dynamic loadable library from Python
interpreter without compilation and linking of the code.
You need to provide a python module to access your
target library in Python/ctypes way.

Ctypes is powerful. It may be too powerful, so that you
can crash your system from Python program. You also
need to convert information in C/C++ header files, such
as name and type of class members, to Python/ctypes
description by yourself.

PyObjc
PyObjc[8] is only available MacOSX/Darin

environment. It provieds way to access Cocoa library
from Python program. Mapping of the name in Python
and it in the Cocoa library is created dyanmically, so you
don't need to provide mapping rules by yourself.

It is easiest way to access Cocoa or Objective-C
libraries in the MacOSX/Darwin environment.
Apparently, you cannot port it to other platforms.

MACSPEECHX.PY MODULE

macspeech.py
The macspeech.py is a python module to access speech

synthesis library on Mac OS written by the author of
Python programming language, Guild von Rossum,
himself. It has simple API, such as SpeakString()
function, to access library and provides a few classes for
advanced use of the library. The vocal alert system
described above uses these classes.

This module was one of standard modules in Python
distribution for Macintosh OS. It gradually faded away
from the distribution and provided only for MacOS upto
version 9.

Macspeech.py to macspeechX.py
After the introduction of Mac OSX operating system,

the macspeech.py module was dropped from Python
distribution which supports MacOSX.

On the other hand, MacOSX itself include improved
speech synthesis library. So if we have a python extension
module which has same API with the original
macspeech.py, we can continue to use our vocal alert
system with minimum modification, changing the name
of imported module in the python program.

The first version of macspeechX.py was written in
2005 using the ctypes module to access MacOSX speech
synthesis library through Carbon API(or C/C++API). It
provides APIs compatible with the macspeech.py module
so that user of macpsech.py can simply replace
macspeech with macspeechX. In the extension module
using ctypes, it is necessary to define classes
corresponding C-classes in the target library, even if you
don't need to access them from Python side to complete
interface definitions of functions/methods in the library.
We choose the cytypes approach among several methods
described in the previous section, because of ease of
development. We already had some experience with
ctypes at that time and PyObjC was not a standard part of
the system yet.

This version of macspeechX also support use of
embedded speech commands in a message passed to
MacOSX speech synthesis library. Embedded speech

Figure 2: Various Methods to extend Python using
modules linking to external libraries.

TUPPC109 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

830C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

commands include phonetic symbols to represents spoken
message. We can imitate Japanese using these phonetic
symbols, in principle.

Current Version
Since MacOSX 10.7, Carbon API for speech synthesis

library became obsolete and only Cocoa(Obj-C) APIs are
provided. This is a version which officially supports
multiple language, including Japanese, in speech
synthesis library. The latest version of macspeechX.py
now uses both ctypes and PyObjc to access underling
system library. It also provide several new API to access
new functionality in the library. Most importantly for us
is the support of Japanese language. This module should
works with any languages supported by MacOSX and it
speech synthesis library.

Future Release
When the first version of macspeechX.py was

developed, ctypes was one of standard libraries in Python
bet PyObjC. It become a part of MacOSX when Apple
released MacOSX 10.5 Leopard in 2007. It means every
Macs shipped from Apple includes PyObjC and Python
and ready to work. In the future releases of
macspeechX.py, only PyObjc will be used to access
underling speech synthesis library. It will reduce a size of
code and will have higher maintainability. Test version of

macspeechX.py in PyObjc has a half size of the current
version of macspeechX.py

REFERENCES
[1] macspeechX.py is available on the web at

https://pypi.python.org/pypi/macspeechX/1.1a .
[2] S-I Kurokawa et al. “Control System Design for

KEKB Accelerators”, in the proceedings of
PAC'95, p.2205;
http://accelconf.web.cern.ch/AccelConf/p95/ARTI
CLES/MPA/MPA06.PDF

[3] J-PARC Web site ; http://www.j-parc.jp/
[4] “Python/C API Reference Manual”;

http://docs.python.org/2/c-api/
[5] “SWIG” home page; http://www.swig.org
[6] “Cython: C-Extensions for Python”;

http://docs.python.org/2/c-api/
[7] “ctypes – A foreign function library for Python”;

http://docs.python.org/2/library/ctypes.html
[8] “PyObjC- the Python Objective-C bridge”;

http://pythonhosted.org/pyobjc/
[9] “History” section of “New Python EPICS Interface”

by Xiao-Qiang Wang;
http://controls.web.psi.ch/cgi-
bin/twiki/view/Main/NewPythonEpicsInterface#His
tory

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC109

User Interfaces and Tools

ISBN 978-3-95450-139-7

831 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

