

* This work was supported by the U.S. Department of Energy, Office of

Nuclear Physics, under Contract No. DE-AC02-06CH11357.

DISTRIBUTED NETWORK MONITORING MADE EASY - AN

APPLICATION FOR ACCELERATOR CONTROL SYSTEM PROCESS

MONITORING*

C.E. Peters, M. Power, ANL, Argonne, IL 60439, USA

Abstract
As the complexity and scope of distributed control

systems increase, so does the need for an ever increasing

level of automated process monitoring. The goal of this

paper is to demonstrate one method whereby the SNMP

protocol combined with open-source management tools

can be quickly leveraged to gain critical insight into any

complex computing system. Specifically, we introduce an

automated, fully customizable, web-based remote

monitoring solution which has been implemented at the

Argonne Tandem Linac Accelerator System (ATLAS).

This collection of tools is not limited to only monitoring

network infrastructure devices, but also to monitor critical

processes running on any remote system. The tools and

techniques used are typically available pre-installed or are

available via download on several standard operating

systems, and in most cases require only a small amount of

configuration out of the box. High level logging, level-

checking, alarming, notification and reporting is

accomplished with the open source network management

package OpenNMS, and normally requires a bare

minimum of implementation effort by a non-IT user.

BACKGROUND

Ever since the advent of reliable Internet Protocol (IP)

communication, the control system at ATLAS has

become more heterogeneous [1]. This is in part due to the

pervasiveness of the protocol, and because even legacy

devices and tools can be networked via Ethernet with the

addition of extra hardware. The Simple Network

Monitoring Protocol (SNMP) is part of a group of

protocols known as the Internet Protocol Suite defined in

the early 1980’s, and was standardized as RFC2261 (now

RFC3411) in the early 1990’s [2]. Its application to

network device monitoring would then seem to make it an

obvious and pervasive choice for control system

monitoring. However, the openness and extendibility of

the protocol can tend to make implementation appear

difficult to a non-networking or information technology

oriented user. To date in the author’s experience, SNMP

is used mainly to monitor network infrastructure devices

like managed switches and routers.

The purpose of this work is to demonstrate our SNMP

based implementation of control system network

monitoring in a way that exemplifies the name ‘simple’.
There is a large body of previous work related to project

specific implementation as full custom applications [3],

but few papers are dedicated to the ease of use and utility

of SNMP. There are several important pieces of any

network monitoring package which are listed below.

 Operating System: Any network monitoring

implementation is only as good as the operating

system chosen to run it. Since SNMP is an open

protocol, any operating system on either the client or

the server can implement its own SNMP libraries. In

the end, the selection of operating system is often

based primarily on either 1) User familiarity, and/or

2) Organization rules and norms.

 SNMP Monitored Device: Normally in a

distributed system there is an SNMP managed

device, which itself will consist of a master SNMP

agent and several sub-agents (Fig. 1). While

normally transparent to the user, the sub-agents are

responsible for supplying data to the master, who

then handles the task of managing incoming and

outgoing SNMP packets. There is normally at least

one default sub-agent installed with any SNMP

server to respond to preconfigured commands and

queries.

 Centralized Monitoring Database: This server acts

as the single database and coordinator of the

monitoring system. It issues all SNMP commands

and requests, and stores historical values. Most often

comes with graphing and archiving tools, along with

several versions of alarming and notification utilities

called a Network Monitoring System (NMS).

 Management Information Base (MIB): This is the

section where most non-IT users lose their way. A

MIB is simply a tree-like definition of the data and

its association attributes which a certain agent can

handle. It is most often implemented as a text file on

the host computer. There are often several default

MIBs which come with any installation of SNMP

libraries, and therefore the end user often needs to

worry little about MIBs until they begin to customize

their individual system.

Figure 1: Example of a SNMP architecture [4].

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC124

User Interfaces and Tools

ISBN 978-3-95450-139-7

875 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Example SNMP Transaction

1) Network Management System (client) sends a

‘GET’ request to a master agent on a remote device
for a piece of information defined in the remote

MIB.

2) The remote device’s Master agent receives SNMP
packet, and determines which sub-agent owns the

requested data. Calls sub-agent to gather data.

3) Subagent retrieves data and passes back to Master

Agent on the device.

4) Master Agent (server) replies back to requestor

(client) with the request header and accompanying

data.

ACCELERATOR DEVICE SNMP
MONITORING AT ATLAS

Process Overview

During the review of network process monitoring at

ATLAS, there were two main questions to be answered:

1) What devices support monitoring via SNMP, and

2) What centralized database should be used to coordinate

the monitoring process?

Deciding Which Devices can be Monitored

The first step in the implementation of any SNMP

enabled monitoring system is to ensure that all the devices

to be monitored can support the SNMP protocol itself. As

an example of even legacy systems supporting SNMP,

ATLAS uses both current and 1980-1990s hardware in

its control system design. The legacy portion consists of

OpenVMS Alphaservers running a centralized real-time

database. This database and its associated running

processes are critical to the operation of ATLAS. Any

interruption in either the server itself or the running

processes could lead to a halt in the experiment. However

even though the operating system dates to the early

1980’s, OpenVMS has a pre-compiled SNMP library

installed in the operating system as a service, along with

two default MIBs. OS_MIBS contains information

regarding the TCP/IP stack and networking activity, and

HR_MIB which provides information about the host

system itself. This default installation, while not fully

inclusive of all the desired parameters to be monitored, is

available with little configuration.

Installation of an SNMP service on Scientific Linux 6

proved to be even easier, and should be similar in

operation to any other Linux distribution. The open

source package net-snmp is available via the standard

repositories, and was installed via the package manager.

Both the OpenVMS and Linux versions of the SNMP

library are now installed, but often require a few

additional configuration changes. In Linux, these settings

are stored in ‘/etc/snmp/snmpd.conf’, and this file allows

the user to set access limits, the system location, the

manager’s name, and other important parameters which

take effect after a service restart.

Using this technique at the time of writing, ATLAS

now has 2 OpenVMS Alphaservers and several more

Scientific Linux IOCs which are running a configured

SNMP daemon and can respond to SNMP packets. In

addition, several UPS systems have been added as alarm

levels using customized SNMP extension modules, as

discussed in the sections that follow.

Selection and Implementation of the Network

Monitoring System Software Package

In a distributed SNMP monitoring installation, the

software package responsible for collecting, aggregating,

and responding to all the individual data points is referred

to as the Network Monitoring System (NMS). There are

several options to choose from in this category of

software packages. In many cases, the NMS can perform

much more than simple SNMP transactions. However,

the decision should be made early on as to how much

support the organization requires, and compare those

costs. There are many large enterprise grade systems that

are open source and free of any licensing cost, apart from

service and support, for example Nagios [5], Zenoss [6].

In the end, ATLAS chose OpenNMS for its installation

due to its reputation as a large scale, enterprise network

monitoring software. In addition, OpenNMS’s
installation instructions are very straightforward, and all

the instructions are in the form of a large collection of

wiki pages what are easy to understand and grouped into

logical sections. There is also the option to test out a

‘demo’ of the software using a sandbox website set up by

the company: http://demo.opennms.com/demo, which

runs the actual software and not a pre-filmed movie

stream. In addition, the package is fully available via

package managers, and most of the time does not require

any manual compilation of binaries in order to install.

CUSTOM ATLAS SUB-AGENT
IMPLEMENTATIONS

The initial results at ATLAS were that the default

installation of both the SNMP managed devices and

OpenNMS were sufficient to monitor the low level

performance of the systems themselves, but did require

some additional customization. For example on

OpenVMS, data points like number of current TCP

connections, total number of processes, and number of

users are all available by default. However, due to the

large amount of remotely hosted displays which often

consume large amounts of memory on legacy systems the

controls group desired more information about memory

management and specific processes. Also, there is a

‘Direct I/O’ parameter which can be used to monitor all

CAMAC (Computer Automated Measurement and

Control) I/O transactions throughout the accelerator.

In order to extend the functionality of the SNMP

service, a custom sub-agent was developed. This effort

was guided by an HP OpenVMS manual for the SNMP

service itself, and several example programs [7]. Having

this documentation made it easy for a single developer to

TUPPC124 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

876C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

extend the MIB on these machines to include these

critical parameters.

In comparison, an effort was also undertaken to expand

some of the MIBs located on several Linux machines

located throughout the facility which are connected via

USB to Uninterruptable Power Supplies (UPS).

Normally, SNMP monitoring of UPS systems is

accomplished via a separately installed network gateway

on the UPS itself. However, with SNMP sub-agents it is

possible to extend the default MIB on the host system and

include application specific information from custom

scripts and executables. There are several methods to

accomplish these customizations, described below.

 Using the SNMP Configuration: The snmpd.conf

configuration file allows the user to specify several

basic customizations. This includes the ‘proc’
directive which will monitor the number of processes

running with a specific process name. It is also

possible, via the ‘extend’ directive, to specify custom

scripts to be executed whenever a certain data point

is requested, and the results of that script will be

passed back within a standard SNMP transaction.

 Via the SNMP-Perl Module Extension: The net-

snmp Perl module is available as a separate install.

By installing this package, the user can specify a

locally installed Perl script which will be executed in

a similar manner as the ‘extend’ directive above.
However, there is more low level programmatic

access to parameters using the Perl add-on than there

might be when using regular Bash scripts.

 Compiling a Custom Developed Sub-Agent: This

is the most complex method to extend SNMP and

requires programming knowledge. The user is also

responsible for creating a custom MIB, if desired.

The advantage is that the developer has full access to

the libraries of that language to interact with the host

system.

Table 1 describes the advantages and disadvantages to

some of these methods.

Table 1: Summary of SNMP Extension Methods

Method Advantages Disadvantages

SNMP
Configuration

No compiling, very
easy to implement,
well documented

Limited to net-snmp
tools, libraries and

functions

SNMP-Perl
Module

No low level
programming or
compiling required,
access to many pre-

installed Perl
libraries.

Requires knowledge
of Perl and does not

allow low level
access to the

machine.

Custom SNMP
Agent running
as separate
process

Complete
customized
extensions, almost
no limits to SNMP
data collection

Requires expert
knowledge of system

and programming
experience

EXAMPLE USE CASE & DATA ANALYSIS

The best way to illustrate the power of distributed
network monitoring over a wide range of devices in the
system is by example. The ability to quickly recall and
visualize data makes it sometimes trivial to recognize and
implement corrective actions that would otherwise go
unnoticed. By using provided utilities such as level
checking and automated email notifications, this data can
propagate through an organization even before an issue is
noticed by the end users.

The legacy OpenVMS systems maintained by ATLAS
function as centralized real-time databases and also host
several X-window displays throughout the facility.
Several times a month, the systems would experience
drastic slowdowns and all displays would freeze. The
cause was not immediately obvious. However, after
implementing SNMP monitoring of many critical
parameters of the systems, two revelations emerged.
First, as can be seen on the following graph (Fig. 2), the
total available free memory was at a constant state of near
zero. The green section of the graph is very low, and even
hits zero in some cases in 2012. Second, at some point
the installed memory pagefile had been disabled from the
system. This extra secondary bank of pagefile memory is
the orange section of the graph, and re-installing this
pagefile (after January 2013) assured the system would
have a reserve of memory if the system became highly
utilized. Fixing these problems has led to zero downtime
due to memory management on the legacy systems. In
addition, during times when there are issues, OpenNMS
automatically sends email notifications to administrators
to notify them of the problem. These level checking and
notification utilities are all available by default and easily
configurable via the OpenNMS web site.

Figure 2: OpenNMS memory chart showing very low free

memory (green), and the installation of a secondary page

file (orange). Gaps are due to system downtime.

In addition to memory monitoring, Linux based CPU
monitoring can be useful to diagnose slowdowns or areas
of extra capacity (Fig. 3). Once again, these graphs are
available by default and with almost no configuration
once net-snmp is installed and OpenNMS is monitoring
the system. In addition, OpenNMS comes out of the box
with certain default limits for CPU usage and hard disk
space, and will notify any users of an issue before it
begins to affect the experiment itself. The addition of
user-requested automation increased the CPU usage on
the below system after July.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC124

User Interfaces and Tools

ISBN 978-3-95450-139-7

877 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 3: Example of Linux CPU statistics (gaps due to

reboots or OpenNMS monitoring restarts).

The net-snmp Perl module was used in order to
implement UPS monitoring into many sections of the
accelerator. The local utility power is not perfect and
sometimes becomes interrupted during an experiment. It
was desired to have an alert automatically issued
whenever the charge on a battery became low, or the
battery itself went out of life and ceased operation. In this
case, the default SNMP MIBs did not include the vendor
specific UPS monitoring parameters since there are
multiple methods to interface with each UPS itself. A
custom Perl script was written to query a third program
which monitors and displays vendor specific UPS
information. The results from this query were then parsed
by the Perl module, and passed back to the SNMP agent
as a normal response.

 Figure 4 shows an example of UPS charge monitoring.
The few drop outs represent a battery ‘self-test’, and
when they drop too low can be an indicator of a failing
battery.

Figure 4: Example of UPS charge monitoring.

The last example of custom process monitoring is using
the ‘proc’ directive within the snmpd.conf file. This
allows the user to specify that the SNMP library should
automatically make available a parameter as part of the
default MIB indicating how many of the named processes
are currently running. This allows ATLAS to monitor
specific update and monitoring processes running on
every remote node throughout the facility. The failure of
one of these processes will change the number currently
executing, and generate an email notification once the
value falls below a specified limit (Fig. 5).

Figure 5: Example of a custom automated email alert.

CONCLUSION

This work to implement distributed monitoring of a

heterogeneous control system was undertaken in 2012 and

required only two engineers approximately two weeks of

effort to first implement. The data which can be collected

from this type of automated logging cannot be fully

appreciated until it can be presented in a searchable,

graphical system along with automated alerts and

notifications. The tools used are all open-source and

come with complete documentation either online, or via

normal library resources.

This same work could be applied to any size control

system for minimal cost or effort. Many of the

parameters discussed in this work are available after

installing exactly 2 packages (net-snmp and OpenNMS)

and performing only basic configuration. The added

customizations are available in a range from default

SNMP directives, to basic scripting languages, all the way

up to large and complex standalone sub-modules. The

insight gathered as a result of this effort should prove to

be extremely valuable to any systems engineer as

compared to the time and cost trade-off to implement.

REFERENCES

[1] F. Munson, D. Quock, B. Chapin, and J. Figueroa,

 “Argonne’s ATLAS Control System Upgrade”,
 International Conference on Accelerator and Large

 Experimental Physics Control Systems, ICALEPCS

‘99, Trieste, Italy, October 4-8, 1999.

[2] D.O. Savu, B. Martin, A. Al-Shabibi, R. Sjoen, S.M.

Batraneanu, S.N. Stancu, “Efficient Network
Monitoring for Large Data Acquisition Systems”,
Proceedings of ICALEPCS 2011, Grenoble, France,

10-14th October 2011.

[3] http://tools.ietf.org/rfcmarkup?doc=3411

[4] http://www.novell.com/documentation/edir873/

edir873/data/ag7hbgr.html

[5] http://www.nagios.org/

[6] http://www.zenoss.com/

[7] Hewlet-Packard Company, “HP TCP/IP Services for
OpenVMS, SNMP Programming and Reference”,
Palo Alto, California, January 2005.

TUPPC124 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

878C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

