
VISUALIZATION OF EXPERIMENTAL DATA 
AT THE NATIONAL IGNITION FACILITY* 

Matthew S. Hutton, Rita Bettenhausen, Essex Bond, Allan Casey, Robert Fallejo, Judith Liebman, 
Amber Marsh, Thomas Pannell, Scott Reisdorf, Abbie Warrick, LLNL, Livermore, CA, 94550, 

U.S.A 
 

Abstract 
An experiment on the National Ignition Facility (NIF) 

may produce hundreds of gigabytes of target diagnostic 
data.  Raw and analyzed data are accumulated into the 
NIF Archive database.  The Shot Data Systems team 
provides alternatives for accessing data including a web-
based data visualization tool, a virtual file system for 
programmatic data access, a macro language for data 
integration, and a Wiki to support collaboration.  The data 
visualization application in particular adapts dashboard 
user-interface design patterns popularized by the business 
intelligence software community.  The dashboard canvas 
provides the ability to rapidly assemble tailored views of 
data directly from the NIF archive.  This design has 
proven capable of satisfying most new visualization 
requirements in near real-time. The separate file system 
and macro feature-set support direct data access from a 
scientist’s computer using scientific languages such as 
IDL, Matlab and Mathematica.   Underlying all these 
capabilities is a shared set of web services that provide 
APIs and transformation routines to the NIF Archive.  
The overall software architecture will be presented with 
an emphasis on data visualization.  

INTRODUCTION 
 
A target shot on the National Ignition Facility often 

results in the capture of hundreds of gigabytes of laser 
and target data.  This data is collected via a cluster of 
software agents where it is transformed and loaded (ETL) 
into the NIF Archive. 

Subsequent data analysis is performed either online via 
automation or offline by scientists. For example, the Shot 
Analysis and Visualization (SAVI) system is an analysis 
cluster that converts raw signal data into calibration-
corrected, diagnostic-level measures such as neutron yield 
and hohlraum temperature. These measurements are 
typically available in the archive within 15 to 30 minutes 
of the shot. 

During this timeframe, operations and scientists use 
data visualization to validate diagnostic performance and 
gain perspective on the outcome of the experiment. 

 Subsequently, the data visualization tool is used by 
scientists to explore data, correlate results, support 
experimental analysis and modelling, and for 
collaboration among scientific working groups.   

Modelling and experimental analysis performed by 
scientists requires additional technologies that can deliver 
bulk data acquisition, data integration, and support for 
uploading of results back to the archive. 

Data Visualization at the National Ignition Facility has 
radically evolved over the past three years with many 
lessons learned and at least one major technology reboot. 
In this document, we discuss key lessons learned and the 
evolution of complementary solutions that support the 
data requirements of our scientific user base. 

First Data Visualization Attempt 
NIF was commissioned in 2010 and new target 

diagnostics were getting simultaneously fielded. The 
grand challenge for data visualization was to develop a 
new software platform amidst undefined and rapidly 
changing user requirements. Each diagnostic team had 
unique preferences for how diagnostic data should be 
presented.  The development team was overwhelmed with 
the sheer volume and variability of data required to satisfy 
these requirements. 
   The data visualization team initially used a conventional 
software engineering process with the goal of delivering 
new updates in three to four week delivery cycles.   
  The development team selected a Java Server Faces 
(JSF) framework to provide the type of rich, platform-
independent Web 2.0 experience that users had begun to 
expect with the web at the time.   JSF implementations 
provide pre-built, re-usable UI components that could 
reduce development times.  

In practice, the team struggled to obtain the promised 
benefits with a JSF framework. While the ability to use 
pre-built JSF components could allow a developer to 
quickly wire together an application user interface, the 
pre-built JSF components required by NIF’s visualization 
were rarely available. The team found themselves 
constructing components from scratch, a particularly 
expensive task. Furthermore, re-use became an elusive 
target.  

The cyclic delivery schedule although short by some 
standards, was much too long for end-users. It seemed 
users needed to see their requirements implemented in 
order to better define them. This meant multiple cycles 
(months) before user requirements could be fully 
satisfied.  

Additionally, performance of the new visualization tool 
was inadequate.  Navigation was painfully slow as users 
sometimes needed to wait for the rendering of a page in 
transit to another page.  The very nature of JSF page 
rendering relied on the server pre-aggregating data before 
it was sent to the browser for rendering.   Efficiently 

 ___________________________________________  

*This work performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. #LLNL-
ABS-632634, LLNL-CONF-644573 

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC126

User Interfaces and Tools

ISBN 978-3-95450-139-7

879 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



querying the archive to retrieve hundreds of disparate 
records while the user waited proved to be an ongoing 
technical challenge. Attempts to improve performance led 
to complex SQL requiring a multi-disciplined team to 
optimize and re-optimize queries as execution plans 
changed.  In the end, overall performance was still slow 
for most pages. Users spent far too long watching a 
spinning progress meter.   

Archive Viewer Background 
A separate tool, the Archive Viewer, was established 

early-on as a primitive catch-all visualization capability 
for the archive.    Utilizing the archive’s metadata 
structures (discussed), the tool could render any content 
from the archive in a web-based user interface. It 
provided flexible search capabilities and data downloads 
in various formats.  Expert users used the tool primarily 
as a back-door for data exploration and targeted 
downloads. Although it was fast and functional, it lacked 
the highly-tailored visualization desired by the users and 
presented by the JSF-based visualization tool. 

In essence, NIF had two different visualization 
applications. One product required no ongoing 
development and the other struggled with the challenges 
mentioned earlier. 

There was certain elegance and appeal to the “free” 
visualization provided by the Archive Viewer.  It took 
advantage of key features of the archive such as 
introspection and metadata. However, it lacked the 
“gloss” demanded by users. 

Visualization Redux - Dashboards 
The advent of new, powerful JavaScript frameworks 

such as jQuery presented opportunities to rethink our 
architecture.  Could we leverage the ‘free visualization” 
aspects enabled by the archive, yet present a rich and 
tailored visualization experience to the user?   

This objective in mind, a prototyping effort eventually 
led to a new dashboard capability within the Archive 
Viewer. The success of this new approach quickly led to 
the de-commissioning of the old JSF-based visualization 
project.  

In business, a dashboard consolidates key operational 
or performance metrics into a single, user-friendly page 
[1].  This is similar to what scientists and diagnostic 
teams required, data tailored and consolidated into a small 
set of pages that maximize information at-a-glance.   

The Archive Viewer dashboard (Fig. 1) is created by 
choosing a layout, typically a grid. Pages are designed by 
assembling widgets. A widget is a self-contained 
component designed to render a particular type of content. 
For example, a widget might present a table of data, an 
image, or an interactive plot. The widget is drag-and-
dropped from a palette into the layout.  Over time, we 
designed widgets to become highly configurable so that a 
few dozen distinct widget-types could in combination, 
satisfy almost any arbitrary visualization need. 

 

 
Figure 1: The NIF Archive Viewer Dashboard 

The dashboard approach simultaneously solved 
multiple problems. Software developers were suddenly 
removed from the process of writing custom software 
code to present data.  Secondly, performance from the 
perspective of the user radically improved. Each widget 
can take advantage of a browser thread and render itself 
independently. This gives the appearance of rapid 
application response as data begins to appear on the 
screen immediately. 

In the first month of deployment we were able replicate 
nearly two years worth of custom development in the 
JSF-based visualization tool through dashboards. From 
there, the tools content diverged as new dashboards 
quickly emerged (Fig. 2).  Over several months we 
designed more flexible layouts and widget controls. 
Turnaround time to produce new dashboards (completely 
tailored views of data) shrunk from days to hours to near 
real-time. It is now common to craft a dashboard 
alongside the customer as she talks through her 
requirements. 

Dashboards are typically defined around hierarchically-
organized subject-areas. For example, each diagnostic is 
defined as a group of dashboards with summary and 
additional levels of detail.   Some dashboards revolve 
around collaborative working groups such as symmetry, 
backscatter, or neutronics.   

 In addition to “single shot” dashboards, we have 
several dozen multi-shot dashboards which provide 
interactive trending across shots and comparisons to 
simulations.   A dashboard can be made public or private 
(owned by an individual). Private dashboards allow us to 
provide even more tailored content to individuals without 
cluttering the menu. 

 Dashboard Architecture 
The web-based dashboard front-end of the Archive 

Viewer is custom-written using jQuery and JavaScript 
MVC.  These technologies led to an elegant and 
maintainable object-oriented, JavaScript dashboard 
framework.  Open-source JavaScript charting frameworks 
such as HighCharts provide interactive plotting 
capabilities with series selection, auto-scaling, zooming, 
etc.   
 

 

TUPPC126 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

880C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools



 
Figure 2: Creating a new dashboard in real-time.  Widgets 
(plots, images, and tables) are dropped from a palette into 
a layout. The newly dropped widget (left) allows the user 
to configure data access bindings and plotting behaviour. 

The NIF Archive 
The NIF Archive itself enables many of our data 

visualization capabilities.   The archive is the permanent 
repository for experimental data generated by the NIF. In 
addition to capturing laser and target diagnostic data, the 
archive contains setup parameters, serialized-part history, 
instrument calibration, etc. This data is essential for 
performing data analysis and establishing provenance of 
experimental results.  Data visualization uses the archive 
as its sole data source.  

The archive stores data in an Oracle 11g RAC database 
cluster. We determined that most data is structured and 
therefore scalar components are organized into tables and 
columns making trending possible. Waveforms and 
images are transformed into a NIF canonical layout, 
packed into a Hierarchical Data Format (HDF) document 
and stored as Binary Large Objects (BLOBS) in the 
database.  

The archive provides an important enrichment function 
that simplifies the visualization process. An asynchronous 
enrichment agent generates JPEG display images of 
various sizes and color maps immediately following 
archival.  These images are stored as metadata alongside 
the original HDF image or waveform. The ability to 
quickly display web-friendly images dramatically 
improves visualization performance.  

The archive’s data structures are also fundamental to 
the visualization process.  The archive is built on top of a 
low-level Content Management framework.  The content 
management core provides important features such as 
versioning, data access control, and metadata.   It enabled 
us to logically model our data structures into object-
oriented classes.  Although data is stored relationally in 
the database it is represented by the API as hierarchical 
objects that can be introspected by visualization codes. 
These abstractions form one of the key building blocks 
that enable the visualization engine. 

The archive makes extensive use of metadata useful in 
data visualization. One primary example of metadata is 
the NIF data taxon.  Every datum is classified by a 
taxonomic label. This multi-part key is used extensively 
to relate data to its origin, diagnostic family, and the 
analysis process that generated it. Other examples of 

metadata include data quality, class and attribute 
descriptions, user comments, and data provenance (ie. 
references to all data and algorithms used to generate a 
processed result).  

The Archive API is typically accessed by clients 
through a SOAP-based Web Service. The web service 
provides an abstraction layer which enabled development 
of multiple data visualization and integration solutions 
described in this document. 

WebDAV 
The Archive WebDAV server provides a web-based 

filesystem alternative for accessing the NIF archive.  Web 
Distributed Authoring and Versioning (WebDAV) is a 
standards-based extension to HTTP that can support 
document collaboration [2].  Initially, all document-
oriented data such as waveforms, images (raw or for 
display purposes) are served from WebDAV. 

The Archive Viewer provides a convenient method for 
browsing data visually; but often scientists need to 
download large sets of data after each shot. Requiring 
users to navigate web pages and click to download each 
item quickly becomes a chore.   

In 2012, WebDAV was enhanced to address the needs 
of bulk downloads and automation.  We use WebDAV to 
offer a virtual file system to the entire archive. All the 
data in the archive is presented as if they were files on the 
file system. As such, WebDAV can provide a predictable 
URL (path) to data across shots.  

The file system is considered virtual because data is 
actually maintained in the database. Content is rendered 
only when the user actually downloads a file. This also 
allows WebDAV to present data in many alternate 
formats. These formats are rendered at request time 
requiring no additional copies of data. For example, an 
HDF image can be rendered as a PNG, TIF, or a JPG file. 
Waveforms and scalar data can be HDF or various plain-
text formats. 

WebDAV as an HTTP-based protocol can be navigated 
with a simple web browser or be mounted by most 
modern operating systems as a networked drive. It 
provides a lowest-common-dominator for users, as almost 
any language or tool can query HTTP content. Examples 
of popular tools include Unix wget and curl, desktop 
analysis languages such as IDL, MATLAB, and 
Mathematica, and general languages such as Java, Perl, 
and Python.   WebDAV has become a powerful medium 
for automating user data downloads. 

Desktop Analysis and Macros 
By delivering predictable paths (URLs) for fetching 

data from WebDAV, users can script simple bulk 
downloads to their desktop. However, most sophisticated 
desktop analysis involves fetching dozens or even 
hundreds of individual files, parsing them to acquire 
specific scalar values, and potentially performing 
conditional lookups to resolve calibration. The data 
acquisition and consolidation codes could easily exceed 
the algorithmic code required to analyze the data.  

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC126

User Interfaces and Tools

ISBN 978-3-95450-139-7

881 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Building upon WebDAV and the Archive Web Services 
layer, we introduced a Domain Specific Language (DSL) 
enabling user-written macros (Figs. 3 and 4). A DSL is 
language tailored to a particular problem domain [3].  The 
macro assembles disparate scalar information into a single 
text file using concise, user-friendly language syntax.  

The macro consolidates all values into a single property 
file of the user’s design. It also collects binary files such 
as images into a single folder making the job of scripting 
as simple as scooping a set of files from a directory. In 
addition, it provides a WebDAV folder for the user to 
upload analysis results back into the archive. Using 
macros, the chore of writing data acquisition codes for an 
end-to-end diagnostic desktop analysis can be written 
very quickly, typically in a few hours. 

 

 
Figure 3: A user-defined macro defines all inputs required 
to perform NTOF diagnostic analysis on the desktop. The 
macro language allows the user to layout the input file 
and substitute macro mark-up for parameters. 

 
Figure 4: A sample of the macro-generated parameter file 
for NTOF. The macro is not executed until the user 
attempts to access the file from WebDAV. 

The macro capability has proven powerful enough to 
become a key component in the new data integration 
engine used by the SAVI analysis system, a software 
cluster that performs automated analysis of target 
diagnostic data on the NIF [4]. 

Finally, we make available WebDAV client libraries for 
popular scientific analysis tools such as IDL and 
Mathematica.  This allows these tools to quickly connect 
and authenticate with WebDAV. The libraries also provide 
utilities for efficiently working with NIF canonical data 
formats.   

Self-service 
We continue to evolve towards self-sufficiency.  

Software developers can focus on frameworks that 
provide general capabilities rather than writing reports or 
servicing ad-hoc data requests. 

As tools mature and the collective knowledge-base 
improves, we see users capable of developing their own 
dashboards, writing their own macros to acquire data 
from the archive, and even integrating their own codes 
into the automated processing cluster provided by SAVI.   

Indeed, users are beginning to do these things and as a 
result, a more technical and self-sufficient culture is 
emerging among our users.  

Summary 
Meeting the needs of scientific users was a learning 

process requiring willingness to engage new technologies 
and abandon failed efforts.  A good data visualization 
solution must be able to rapidly deliver against 
requirements, preferably in real-time.  New visualization 
must be able to be accomplished outside of typical 
software delivery schedules. Performance is always a 
first-class concern.  

The web-based dashboard model provides an effective 
visualization solution for NIF. However, good data 
visualization capabilities are not enough. As scientists 
need to analyze data with their own codes, streamlining 
data provisioning is also a priority.  Higher-level services 
such as user-defined macros and client libraries for 
popular tools provide a comprehensive data integration 
solution for scientists. 

REFERENCES 
[1] “Dashboard (business)”, Wikipedia: The Free 

Encyclopedia; 
http://en.wikipedia.org/wiki/Dashboardbusiness  

[2] “WebDAV”; Wikipedia: The Free Encyclopedia; 
http://en.wikipedia.org/wiki/WebDAV  

[3] “Domain-specific language”; Wikipedia: The Free 
Encyclopedia;  http://en.wikipedia.org/wiki/Domain-
specific_language 

[4] A. Casey, et al, “Flexible Data Driven Experimental 
Data Analysis at the National Ignition Facility”, 
ICALEPCS’13, TUPPC072 

TUPPC126 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

882C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools


