
PVMANAGER: A JAVA LIBRARY FOR REAL-TIME DATA PROCESSING
G. Carcassi, K. Shroff# NSLSII, Upton, NY, USA

Abstract
Increasingly becoming the standard connection layer in

Control System Studio [1], pvmanager [2] is a Java
library that allows creating well behaved applications that
process real time data, such as the one coming from a
control system. It takes care of the caching, queuing, rate
decoupling and throttling, connection sharing, data
aggregation and all the other details needed to make an
application robust. Its fluent API allows specifying the
details for each pipeline declaratively in a compact way.

INTRODUCTION
Fig. 2 shows the general architecture of the NSLS2

control system environment, a common problem
encountered by client applications for control systems is
the decoupling of the events from the controls network
and the UI thread. The need to aggregate the events in
time (for rapidly changing pv/pvs) and for groups of pvs
was necessary to address various performance issues in
CS-Studio and to support multi-channel applications.

The goal of pvManager is to make writing clients for
real-time data more straight-forward, by providing all the
pieces that such a client require, such as data rate
decoupling, via either queuing or caching, data
aggregation/manipulation and notification dispatch on the
appropriate final thread.

ARCHITECTURE
The initial intent of pvmanager was just to address the

recurring issues of writing a well behaved client of a soft
real-time system. The aim has now grown to provide a
full end-to-end framework for gathering data from
different sources, both publish/subscribe and
command/response, aggregating it and performing
computation on background threads [3].

The framework now consist of multiple modules:
 vtype: provides the definition in terms of Java

interfaces of a standardized set of data. One is not
limited to the use of these types (the basic type in
pvmanager is Object) but standardization on them
allows to unlock all the functionality already
implemented

 datasources: provides support for accessing data
from publish/subscribe systems

 services: provides support for accessing data from
publish/subscribe systems

 formula: provides a pluggable Domain Specific
Language for aggregation and computation

The core of pvmanager allows combining all these
elements and creating readers or writers that are thread-
safe with a managed rate of notification.

CS-Studio can now leverage all these elements, but,
since they are well separated, they can be tested without
the UI environment (unit tests are much easier to write)
and can be used in other environments (such as plain
Swing applications, command line, web servers, and so
on).

DATASOURCES
Datasources are the abstract definition for

publish/subscribe data, which is the typical mode for real-
time systems, such as EPICS. Datasources work on
channel, and are able to subscribe readers or writers to
each channel. Current implementations include support
for simulated signals, an in memory scratch space,
filesystem, Channel Access (v3) and PVAccess (v4).

The system can be easily extended with other types. All
one needs to do is implement a few abstract methods, and
connect the callback of the desired system to the methods
that trigger processing of connection and message
notifications. Datasource automatically provide support
for multiplexing (multiple readers on the same channel).
The rate decoupling (limit the rate from the datasource to
the UI subsystem) and rate throttling (decrease the rate if
the UI can’t keep up) that are needed for a well behaved
client, are also automatically supported.

Figure 1: Architecture diagram. Shows the part of the
client that runs at the rate dictated by the source of the
data on the right and the part of the client that runs at the
rate at a client dependent rate.

shroffk@bnl.gov

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC134

User Interfaces and Tools

ISBN 978-3-95450-139-7

903 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

In Fig. 1 we can see the basic layout of the architecture
and the basic building blocks. On the right side we see the
DataSource (EPICS in this case) which is going to
generate a series of events. In the middle we see the
collector, which is the piece responsible to decouple the
data rate. On one side it will receive events at the data
source rate; on the other side it will receive requests for
data at the desired rate. A different implementation of the
Collector will be required in different cases (e.g. a cache,
a queue or a cache for the last n seconds). On the left side
of the diagram we see the client, receiving notifications
on the requested thread at the rate desired. By desired rate
we mean the maximum rate at which it makes sense for
the client to receive notifications. For example, when
displaying something on screen (e.g. a plot or an
indicator) updates faster than 50 Hz make little sense. If
displaying text that needs to be read, updates faster than 5
Hz may already not give the time to read. When writing
to a database or saving to disks, one may want to batch
the updates at 1 Hz, increasing the throughput.

Though this kind of rate decoupling is always required
when writing a good client, it is very tedious and error
prone to re-implement the whole stack for a new
applications. Getting the synchronization right, checking
for correct behaviour during high stress of the system,
sizing the different parameters of the system, all these
activities that a significant amount of time to get right.
With pvManager we provide all the components already
done and tested, so that one can put more time in the
actual new feature of the client application instead of in
yet another pipeline.

SERVICES
Command/response is another typical source of data.

Examples of command/response include web services

(REST or SOAP), CORBA services and databases. The
abstraction for a service within the framework is an
asynchronous call that takes a key/value map of
argument, and returns a key/value map of results. This
allows to generically handle very different types of data
and services. The value, if possible, should map to
VTypes so that one can reuse many of the functionality
and clients built on top of those.

The framework also includes a ServiceRegistry, which
works as a locator for the services. A typical use case in
CS-Studio is that some plug-ins would register their
service implementation to the registry, while UI elements
would use the registry to fetch the service implementation
given a name provided by the user.

General purpose implementations of services are also
possible. We have a generic JDBC service
implementation, which, given an xml with location of the
server and queries, is able to dynamically generate a
service implementation. A similar generic implementation
is being written for PVAccess services.

FORMULA
Pvmanager provides a Domain Specific Language for

data computation. This is automatically done on
background threads, making it easy to leave the UI thread
free. FormulaFunctions can be dynamically added in a
formula registry, in much the same way that services are
added. They are automatically picked up by the parser.

The language supports overriding, and the match to the
correct signature is done at runtime. This also supports
the case in which types within the expression are
changing dynamically. Support for standard mathematical
operation has already been added, as well as aggregation
such as scalars into array and arrays into tables, and other
utility functions (pick the highest alarm, “pointer-like”

Figure 2: Overall Architecture of accelerator tools and services.

TUPPC134 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

904C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

function that given a string returns the value of the
channel with that name).

 CONCLUSION
Pvmanager has grown into a full framework to gather

data in real time, aggregate it and perform computation.
All this while taking care of the issues that such a
complicated multi-threaded system would entail.

REFERENCES
[1] Control System Studio;

http://controlsystemstudio.github.com
[2] http://pvmanager.sourceforge.net/
[3] G. Carcassi, Pvmanager & Graphene, EPICS spring

meeting (2013)

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUPPC134

User Interfaces and Tools

ISBN 978-3-95450-139-7

905 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

