
AN OVERVIEW OF THE LHC EXPERIMENTS' CONTROL SYSTEMS
C. Gaspar, CERN, Geneva, Switzerland

Abstract
The four LHC experiments (ALICE, ATLAS, CMS and

LHCb), either by need or by choice have defined different
requirements, use different equipment, and are operated
differently. This led to the development of four quite
different Control Systems.

Although a joint effort was done in the area of Detector
Control Systems (DCS) allowing a common choice of
components and tools and achieving the development of a
common DCS Framework for the four experiments,
nothing was done in common in the areas of Data
Acquisition or Trigger Control (normally called Run
Control).

This paper will present an overview of the design
principles, architectures and technologies chosen by the
four experiments in order to perform the main tasks of the
Control System: Configuration, Control, Monitoring,
Error Recovery, User Interfacing, Automation, etc.

INTRODUCTION
In general the Control System of an LHC experiment

handles the configuration, monitoring and operation of all
experimental equipment involved in the different
activities of the experiment:

 The Data Acquisition System (DAQ): front-end
electronics, readout network, storage etc.

 The Timing System: timing and trigger distribution
electronics

 The Trigger: the hardware trigger components.
 The High Level Trigger (HLT) Farm: thousands of

trigger algorithms running on a CPU farm.
 The DCS: sub-detector gases, high voltages, low

voltages, temperatures, etc. and also experiment’s
infrastructure: magnet(s), cooling, electricity
distribution, detector safety, etc.

 Interaction with the outside world: LHC Accelerator,
CERN safety system, CERN technical services, etc.

The relationship between the Control System and other
components of the experiment is shown schematically in
Fig. 1. This figure shows that the Control System
provides a unique interface between the users and all
experimental equipment.

Some of the requirements that were common to the
four experiments are:

 Distribution and Parallelism - Due to the large
number of devices and IO channels, the acquisition
and monitoring of the data has to be done in parallel
and distributed over many machines.

 Hierarchical Control – The data gathered by the
different machines has to be summarized in order to
present a simplified but coherent view to the users

 Partitioning – Due to the large number of different
teams involved and the various operation modes of

the system, the capability of operating parts of the
system independently and concurrently is mandatory.

 Automation – Standard operations and error recovery
procedures should be, as much as possible,
automated in order to prevent human mistakes and to
speed up standard procedures.

 Intuitive User Interfaces – Since the operators are not
control system experts it is important that the user
interfaces are intuitive and easy to use.

 All other standard requirements in large Control
Systems: Scalability, Reliability, Maintainability, etc.

Figure 1. Scope of the Experiment Control System.

LHC EXPERIMENTS’ COMMONALITIES
The Joint Controls Project

Around the end of 1997, a common project between the
four LHC experiments and a CERN controls group (first
IT/CO then EN/ICE) was setup. Its mandate was to:
“Provide a common DCS for all 4 experiments in a
resource effective manner” and in more detail to:
“Define, select and/or implement as appropriate the
architecture, framework and components required to
build the control system”.

This project – JCOP (Joint COntrols Project) [1] – was
very successful and it is often cited as an example; it
resulted in a common architecture and a common
framework used by all 4 experiments and all their sub-
detectors and sub-systems (and also by other experiments
and projects at CERN).

JCOP is still active promoting commonality and
proposing and implementing common developments and
upgrades in the area of Detector Control Systems.

Throughout the years, JCOP has spawned many
important sub projects, for example:

 The Architecture Working group
 Technology Survey: evaluation, validation and

selection of products for use by the Control System
 The Framework Working Group
 The Detector Safety System
 And several others

WECOAAB01 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

982C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

The JCOP Framework
The major outcome of the above working groups was

the JCOP Framework (FW) [2]. It was defined as:
“An integrated set of guidelines and software tools

used by Detector Developers to realize their specific
Control System application. The Framework will include,
as far as possible all templates, standard elements and
functions required to achieve a homogeneous Control
System and to reduce the development effort as much as
possible for the Developers”.

At the end of a very detailed evaluation process a
product was selected as the basis for the framework. This
product is a SCADA (Supervisory Control and Data
Acquisition) System - PVSS II (now called WinCC-OA)
[3], from ETM (now part of Siemens). PVSS II has a
highly distributed architecture allowing the Control
System to run distributed over hundreds of PCs. It
provides a common interface to access all necessary
equipment and it provides several tools to ease the life of
building a control system, some of them are:

 Several drivers to access various types of devices
(extendable to allow for user-devices)

 A run-time database for storing the data coming from
the various devices, easily accessible for processing,
visualisation, etc.

 Alarm Handling (generation, filtering, masking,
visualization of alarms)

 Data Archiving, Logging, Scripting, Trending, etc.
 A very powerful User Interface Builder
 Several predefined Interfaces: Parameterisation,

Alarm Display, Access Control, etc.
Within the Framework and in order to handle high level

abstraction, PVSS II was complemented by another tool:
SMI++ (State Management Interface) [4]. SMI++ is a
toolkit for modelling the behaviour of large distributed
control systems; its methodology combines three
concepts: object orientation, Finite State Machines
(FSM) and rule-based reasoning.

By combining these two products the framework offers
tools to implement a hierarchical control system, in
particular using a graphical user interface, shown in
Fig. 2, which allows the configuration of object types,
declaration of states, actions, rules, etc. as well as the
definition and operation of the hierarchical control tree.

The framework was then complemented by numerous
components to completely handle the most common types
of equipment (very often using the OPC - OLE for
process Control protocol) [5]; another communication
protocol –DIM (Distributed Information Management)
[6], to access any non-standard devices; access to a
Configuration Database; System Overview tools to
monitor the state of the control system itself; etc.

The JCOP framework was used to completely design
and build the DCS of ALICE, ATLAS and CMS and in
LHCb it was used across the whole experiment to
implement the Experiment Control System and all its sub-
systems. It is also used by other experiments at CERN
like COMPASS or NA62 and/or other Common projects

like the LHC experiment’s Gas Systems, the Detector
Safety Systems, etc.

Figure 2: The Framework Device Editor Navigator.

LHC EXPERIMENTS’ DIFFERENCES
At the time of starting the Control System’s design it

was considered that the DAQ and Trigger Control areas
did not offer enough commonality to try to work together
among the experiments. So each experiment set up a
Control team to work in this area and in particular, to
design and implement their Run Control (the highest level
interface to the control of the experiment). Not
surprisingly each experiment arrived at a completely
different solution. In fact since the original requirements
were quite similar, the architectural choices and even the
list of components are actually very similar in the four
experiments. What is quite different is the emphasis given
to different design principles and above all the choice of
tools, products or paradigms used to implement each one
of the components.

Design Principles
Different experiments have followed different design

principles and put emphasis on different requirements. In
ATLAS the system was designed to be hierarchical and
provide a high level of abstraction, in CMS the first
design choice was to have a web-based system, while
ALICE tried to design highly customisable and flexible
components and LHCb put the highest emphasis on
having an integrated and homogeneous control system.

Architecture & Scope
The high-level architectures of the four experiments’

control systems are very similar. All are divided into a
DCS tree encompassing the various sub-detectors and
sub-systems and a Run Control tree overseeing the
electronics of the various sub-detectors and the central
DAQ & Trigger systems. Fig. 3 shows as example the
ATLAS architecture, CMS’s architecture is quite similar.
In ALICE and LHCb there is an “Experiment Control
System” (ECS) above all other central systems (DCS,
DAQ, Trigger and HLT), either directly (ALICE) or

Proceedings of ICALEPCS2013, San Francisco, CA, USA WECOAAB01

Experiment Control

ISBN 978-3-95450-139-7

983 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

through a Run Control level (as shown in Fig. 4 for
LHCb).

Figure 3: ATLAS Control Architecture.

Figure 4: LHCb Control Architecture.

CONTROL SYSTEM COMPONENTS
Several frameworks are in use in the LHC experiments:

apart from the JCOP framework there are experiment
specific frameworks in three out of four experiments (as
in Fig. 3). These have different names and slightly
different functionality in each experiment:

 ALICE: uses DATE (Data Acquisition and Test
Environment) [7].

 ATLAS: Provides a set of services for higher level
control [8] and a DAQ framework: the Rod Crate
DAQ Framework.

 CMS: has two complementary frameworks: RCMS
(Run Control and Monitoring System) and XDAQ
(DAQ Software Framework)[9].

Even though these Frameworks provide quite different
tools and components, some functions are present across
all Frameworks as they are basic components of any
Control System:

 Communications: For acquiring data, sending
commands and in general for exchanging messages
between processes.

 Finite State Machines: For the description of system
components and for the synchronization and
sequencing of operations

 Expert System Functionality: For error recovery,
operator assistance and/or system automation

 Databases: For storing configuration data, for
archiving historical data, etc.

 User Interfaces: For Visualization and for System
operation

 Many other services like process management,
resource management, etc.

Communications
All Frameworks provide communication mechanisms.

Within communications we can distinguish three types of
data flow:

 “Control” data: These are normally short messages,
bidirectional traffic mostly commands in one
direction and status messages in the other direction.

 “Configuration”: These messages can contain large
amounts of data mostly in the direction control-
system to hardware (or software process).

 “Monitoring”: These can also be large messages
normally in the opposite direction .i.e. hardware (or
software process) to Control System. Furthermore
Monitoring data may need to be “archived” or made
persistent either for short periods or even
permanently, so that the system status can be
analysed or trouble-shot in case of problems.

The various experiments have different ways of
handling these different types of data:

 JCOP FW/LHCb: Within the JCOP Framework most
control type data is handled by the SMI++ toolkit
which uses the DIM Publish/Subscribe mechanism.
The configuration data is handled by PVSS and it is
sent to specific devices (hardware or software) using
the appropriate drivers, in LHCb, for example, the
largest amounts of Configuration and Monitoring
data are in the DAQ area and are sent/received via
DIM.

 ALICE ECS also uses SMI++ (but outside the
JCOP/PVSS framework) and hence DIM for control
messages. DIM is also used directly for some
Configuration and Monitoring but ALICE has the
particularity that most sub-detector DAQ electronics
are configured via the DCS hence via the JCOP FW
(and in most cases via DIM).

 ATLAS uses CORBA [10] for all Communications,
within two packages: “IPC” (Inter Process
Communications) for Control and Configuration and
“IS” (Information Service) for Monitoring. In
ATLAS some sub-detector electronics are also
configured via the DCS (JCOP FW)

 CMS uses Web Services [11]. These are used within
the RCMS high level framework for Control, within
the XDAQ framework for Configuration and within
XMAS (the XDAQ Monitoring and Alarm System)
for Monitoring.

Within the DCSs and in LHCb, PVSS II (temporarily)
and its archive mechanism in Oracle (permanently) is
used as a repository for monitoring data. This is also the
case of the ATLAS IS (although only transiently) and the
CMS XMAS system.

The three most used communication mechanisms in the
DAQ area are DIM, CORBA in the ATLAS IPC and the
CMS Web Services (XML/Soap), they all use the
Client/Server model and mostly a Publish/Subscribe

WECOAAB01 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

984C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

mechanism. It is difficult to compare them in terms of
performance, but DIM is a thin layer on top of TCP/IP,
IPC is a thin layer on top of CORBA, both provide a
simple API, a Naming Service and some error-detection
and recovery. As advantages they are both quite efficient
and easy to use. As drawbacks, DIM is home-made while
CORBA is not so popular anymore. As for Web-Services
they are a standard, modern, protocol but their
performance can be a drawback due to the XML
overhead. In the DCS area OPC DA (Data Access), is
widely used. It is an industry standard but its main
drawback is the link to Windows, this will be overcome in
the new platform independent standard: OPC UA (Unified
Architecture).

Finite State Machines
All experiments use Finite State Machines in order to

model the system behaviour. The SMI++ toolkit is the
most used since it is an inherent part of the JCOP FW and
hence used in all DCS Systems, for the complete
modelling of LHCb’s Experiment Control System and
also used in ALICE as a stand-alone tool. ATLAS has had
several iterations of their FSM toolkit, the first version
used CHSM (Concurrent Hierarchical State Machines)
which used its own statechart specification language, the
second version used CLIPS [12] (a tool for building
expert systems) while the current version is home-made
in C++. CMS built two FSM toolkits, one in Java for
RCMS and one in C++ for XDAQ. The approach of each
experiment to how to design, implement or distribute the
FSMs for the various sub-systems is also different:

 In ALICE the FSM for all sub-systems was provided
centrally but can be different from one sub-system to
another.

 In ATLAS the FSM for all sub-systems was provided
centrally and they all have to be the same.

 In CMS FSM templates were provided centrally,
sub-systems implement specific Java or C++ code.

 In LHCb FSM templates were provided centrally,
sub-systems can modify the template using a graphic
editor.

In general most experiments decided on a few, coarse-
grained states to model their Run Control operations.
Assuming that most sub-systems can work in parallel,
generic actions can be sent down from the top and the
top-level needs no or very little knowledge of the sub-
systems’ internals.

Figure 5: LHCb Run Control FSM.

Fig. 5 illustrates as an example the LHCb Top-level Run
Control FSM. ATLAS and CMS FSMs are quite similar.

In ALICE the top-level needs to synchronize more
detailed operations across sub-systems so the top-level
FSM needs more states, around 20 to 25, 15 states from
“ground” state to “RUNNING”.

Expert System Functionality
All experiments saw the need for some form of expert

system functionality. The approach is normally: “we are
in the mess, how do we get out of it?” by opposition to
“we are in the mess, how did we get there?” and none of
the systems has the capability of “automatic learning”, in
all cases all “rules” are coded by experts. Expert systems
are used for advising the shifter (in ATLAS and CMS),
automated error recovery (ATLAS, CMS, LHCb and
more modestly in ALICE) and to completely automate
standard operations (LHCb). The tools used are:

 In ATLAS: CLIPS is used for error recovery. There
are central and distributed (domain specific) rules.
The system is used only by CLIPS experts, they can
implement sub-system rules on request. A different
tool is used for the “Shifter Assistant”. This is based
on “Esper” [13], a component for Complex Event
Processing. Esper allows dealing with large volumes
of high-frequency time-based event data. ATLAS is
now moving away from CLIPS and more towards
the Esper approach.

 The CMS RCMS framework provides expert-system
functionality implemented in Java: asynchronous
notifications can be received from sub-systems
allowing each node to automatically handle
problems. A separate, complementary tool for shifter
assistance: the “DAQ Doctor”, uses the Perl scripting
language.

 In LHCb and in the experiments’ DCSs SMI++ is
used. Since the tool is quite simple to use (due to its
graphic PVSS II interface), it is used directly by sub-
system experts to synchronize and automate their
domain specific operations. In LHCb, at top-level,
central rules integrate the various sub-systems.

 ALICE uses SMI++ too, but automatic error
recovery is only performed in a few specific cases.

There are two distinct decision making or reasoning
approaches: Centralized or Decentralized. In the
Centralized approach all rules are in one single repository
and there is one central engine that has access to all rules
and all necessary data, this is the case of Esper for
example. In the Decentralized approach each sub-system
deals with its own local problems, hierarchically, possibly
in parallel. This is the case of SMI++ and also the ATLAS
CLIPS and the CMS RCMS implementations.

User Interfacing
Many types of User Interfaces are used within each

control system: there are alarm screens and message
displays to warn the operators about problems, there are
many monitoring displays providing information about
the most important areas of the experiment and there are

Proceedings of ICALEPCS2013, San Francisco, CA, USA WECOAAB01

Experiment Control

ISBN 978-3-95450-139-7

985 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

operation interfaces allowing the operator to interact with
the system, of which the most important are the Run
Control and the DCS Control. Again here different tools
were used by the four experiments:

 LHCb and the four DCS systems use the JCOP
Framework and its very powerful PVSS Graphic
Interface Builder. As an example the ALICE DCS
User Interface is shown in Fig 6.

 ATLAS used Java in order to build a modular Run
Control, for which central and sub-system developers
can develop and contribute their own modules.

 CMS uses WEB tools, Javascript + HTML, to design
the Run Control (Fig. 7).

 ALICE’s Run Control uses Tcl/Tk.

Figure 6: ALICE DCS Interface.

Figure 7: CMS Web-based Run Control.

OPERATIONS
All four experiments run 24 hours a day, 7 days a week

during LHC running periods (several months a year). The
number of operators on shift at any point in time is quite
different in the different experiments:

 ALICE: 4 - Shift Leader, DCS operator, ECS +
DAQ operator and Data Quality + High Level
Trigger operator

 ATLAS: 8 - Shift Leader, DCS operator, Run
Control operator, Trigger operator, Data Quality
operator, plus three sub-detector operators

 CMS: 5 - Shift Leader, DCS operator, Run
Control operator, Trigger operator and Data Quality
operator

 LHCb: 2 - Shift Leader (DCS + Run Control
operator) and Data Quality operator

SIZE AND PERFORMANCE
Even though different experiments made different

choices, the size of the Control Systems is comparable.
The amount of computers (PCs) needed to control the
various parts of the experiment is summarized in Table 1.

Table 1: Size of Control System in PCs

Table 2: Some Selected Performance Numbers

Needless to say that all four Experiments’ control
systems work perfectly as can be seen in Table 2, in
particular looking at the DAQ Inefficiency row.

ACKNOWLEDGMENTS
Many thanks to the colleagues in the LHC Experiments

and in the EN/ICE group for their input and assistance, in
particular: A. Augustinus, V. Barroso, F. Carena
(ALICE); G. Miotto, S. Schlenker (ATLAS); F. Glege, A.
Petrucci, H. Sakulin (CMS) and F. Varela (JCOP).

REFERENCES
[1] D. R. Myers et al, “The LHC experiments Joint COntrols

Project, JCOP”, Proc. Int. Conf. on Accelerator and Large
Experimental Physics Control Systems, Trieste Italy (1999)

[2] S. Schmeling et al, “Controls Framework for LHC
experiments” Proc. 13th IEEE-NPSS Real Time
Conference, Montreal, Canada (2003).

[3] PVSS-II/WinCC-OA http://www.etm.at/index_e.asp
[4] B. Franek and C. Gaspar, “SMI++ - an object oriented

Framework for designing distributed control systems”,
IEEE Trans. Nucl. Sci. 45 4 1946-50 (1998).

[5] OPC http://www.opcfoundation.org/
[6] C. Gaspar et al, “DIM, a portable, light weight package for

information publishing, data transfer and inter-process
communication”, Comp. Phys. Comm. 140 102-9 (2001).

[7] F. Carena et al, “The ALICE experiment control system”,
Proc. Int. Conf. on Accelerator and Large Experimental
Physics Control Systems, Geneva, Switzerland (2005).

[8] G. Lehmann Miotto et al, “Configuration and control of the
ATLAS trigger and data acquisition”, Nuclear Instruments
and Methods A, 623, Issue 1, Nov 2010, p. 549-551 (2010).

[9] G. Bauer et al, “First Operational Experience with a High-
Energy Physics Run Control System based on Web
Technologies”, IEEE Trans. Nucl. Sci. 59 4 1597-1604
(2012).

[10] CORBA http://www.corba.org/
[11] WebServices http://www.w3schools.com/webservices/
[12] CLIPS http://clipsrules.sourceforge.net/
[13] Esper http://esper.codehaus.org/

WECOAAB01 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

986C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

