
EFFECTIVE END-TO-END MANAGEMENT OF DATA ACQUISITION
AND ANALYSIS FOR X-RAY PHOTON CORRELATION

SPECTROSCOPY∗

F. Khan † , J.P. Hammonds, S. Narayanan, A. Sandy, N. Schwarz, ANL, Argonne, IL 60439, USA

Abstract
Low latency between data acquisition and analysis is of

critical importance to any experiment. The combination
of a faster parallel algorithm and a data pipeline for
connecting disparate components (detectors, clusters, file
formats) enabled us to greatly enhance the operational
efficiency of the x-ray photon correlation spectroscopy
experiment facility at the Advanced Photon Source. The
improved workflow starts with raw data (120 MB/s)
streaming directly from the detector camera, through an on-
the-fly discriminator implemented in firmware to Hadoop’s
distributed file system in a structured HDF5 data format.
The user then triggers the MapReduce-based parallel
analysis. For effective bookkeeping and data management,
the provenance information and reduced results are added
to the original HDF5 file. Finally, the data pipeline triggers
user-specific software for visualizing the data. The whole
process is completed shortly after data acquisition — a
significant improvement of operation over the previous
setup. The faster turnaround time helps scientists to make
near real-time adjustments to the experiments.

INTRODUCTION
X-ray photon correlation spectroscopy (XPCS) is a

powerful technique for characterizing the dynamic nature
of complex materials over a range of time scales.
The recent development of higher-frequency detectors
allows the investigation of faster dynamic processes. A
consequence of these detector advancements is the creation
of large amounts of image data that must be processed
within the time it takes to collect the next data set.
Parallel computational techniques and high-performance
computing (HPC) resources are required to handle this
increase in data.

The dynamics in the sample is quantified using the
normalized intensity autocorrelation function

g2(τ, q) =
〈I(t, q)I(t+ τ, q)〉
〈I(t, q)〉2

= 1 + βexp

(
−τ
τ0(q)

)
,

where I(t, q) is the intensity scattered at the momentum
transfer q (inverse length scale) at time t, and τ0 is the
characteristic relaxation time at q. The analysis of the g2
function allows one to determine the q-dependence of the

∗Work supported by U.S. Department of Energy, Office of Science,
under Contract No. DE-AC02-06CH11357.
† fkhan@aps.anl.gov

characteristic time scale for the dynamics within the probed
sample.

XPCS has been successfully applied to study a wide
range of systems ranging from colloidal suspensions [1],
gels, and polymers to more recent biological systems like
the aging of proteins in eye-lens suspensions that are
responsible for cataract formation. The workflow in use
at the APS is shown in Figure 1.

ACQUISITION
The CCD-based data acquisition system [2] comprises

a direct detection CCD detector operating continuously at
60 frames/s generating 120 MB/s of streaming raw data
and a field-programmable gate array (FPGA) hosted on a
commercial frame grabber that compresses the data into a
sparse format in real time. Since the detector is operating
in the photon detection mode and owing to the sparsity
of the scattered signal, the purpose of data compression
upstream in the workflow is to reduce the data bandwidth
so the storage and real-time computation can be performed
in an efficient manner. The compression algorithm is
based on a good estimation of the average dark signal and
noise from the detector and is performed by computing a
running average and standard deviation estimation in the
firmware using the FPGA. The output of the FPGA-based
compression system is a series of compressed data frames
each consisting of the location and the intensity of pixels
that register a photon hit. This results in an effective 10-20-
fold compression based on the scattering signal strength of
the specimen that is being measured.

The entire data acquisition system is integrated with
EPICS Area Detector, which provides a suite of plugins
such as different file formats and statistical analysis. A
file-saving plugin converts the compressed binary stream
into the selected file format and writes to the Hadoop
Distributed File System (HDFS).

MULTI-TAU AUTOCORRELATION
A new parallel implementation of the multi-tau

algorithm for multi-speckle XPCS data uses the Hadoop [3]
MapReduce [4] framework. This system performs analysis
in two separate MapReduce phases. The map phases
decompose the problem into independently solvable tasks.
The reduce phases perform the computation on data from
the map phases on different processor cores. Both
MapReduce phases are shown in Figure 2.

The first MapReduce phase computes the multi-tau g2
correlation. Each mapper partitions the intensity data

WECOBA04 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1004C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing



Frame Grabber	

Compression	


(FPGA)	

HDFS	


Disk	

Data	

Pipeline	


1. Save 
compressed 
data	


2. Launch 
MapReduce 
job	


3. Run 
data fitting	


5. Save 
results in 
HDF5 file	


4. Launch 
MATLAB to 
view results	


Hadoop MapReduce	

Cluster	


Figure 1: Different components of the XPCS acquisition and analysis workflow system in use at the APS. These
components are loosely connected to each other using a well-defined HDF5 file interface. (1) The acquisition system
writes data directly to the Hadoop Distributed File System (HDFS). (2) After acquisition, a message in the workflow
pipeline is queued. When the message is processed, the MapReduce job that computes multi-tau autocorrelation of raw
input data from the detector is launched. (3) The user has the option of running different data-fitting algorithms on the
MapReduce job’s output results. These are usually implemented as Python scripts. (4) The user views the output using
MATLAB. (5) Results are saved in an HDF5 file on disk. The user can adjust input parameters and submit the job to be
processed again.

for a single pixel location across all frames of the input
dataset read from the HDFS. The sort phase moves the
mapped intensity data to the appropriate processor for each
reducer. The g2 reducers receive all data with identical
pixel coordinates and calculate the correlation function.
The results are written back to the HDFS.

The second MapReduce phase normalizes the output
from the first phase based on a user-defined pixel-binning
scheme. The mappers partition the g2 data according to the
user-defined bins. The sort phase moves the mapped data
for each user-defined bin to the appropriate processor for
each reducer. The reducers perform the normalization for
their respective bins.

HDF5
The Hierarchical Data Format 5 (HDF5) [5] is a widely

used scientific data format for storing binary data along
with the associated metadata in hierarchical and self-
describing tags. HDF5 is the primary data format used

by our system for storing both data and results. The exact
structure of our HDF5 file is well defined and extensively
documented in the Scientific Data Exchange format [6].

The acquisition system writes the acquisition parameters
for each experiment in a single HDF5 file grouped under
a top-level HDF5 dataset named “/measurement.” Child
elements of this dataset contain information about the
experiment, such as detector type, beam energy, exposure
time, etc. Any additional input from the user required
for analyzing the data is written to the “/xpcs” dataset
in the same HDF5 file. The analysis pipeline refers to
this information when running calculations to produce the
results. The final results along with the output from any
intermediate analysis steps are saved under the same HDF5
dataset called “/exchange.” The semantic of “/xpcs N” and
“/exchange N” (where N is replaced with the number of
the most recent input/analysis pairs) is used to keep track
of multiple types of analysis that ran on the same input data.
Figure 3 shows a typical data layout for an HDF5 file.

Proceedings of ICALEPCS2013, San Francisco, CA, USA WECOBA04

Data Management and Processing

ISBN 978-3-95450-139-7

1005 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Map	
HDFS	


HDFS	


HDFS	
 Map	


Map	
 Reduce	


So
rt	


So
rt	


So
rt	


Reduce	


Reduce	


g2(xi,yj)	
 bin(g2)	
 g2(xi,yj)	
⌃	


g2 Bins	


Map HDFS	


HDFS	


HDFS	
 Map	


Map	
 Reduce	


So
rt	


So
rt	


So
rt	


Reduce	


Reduce	


I(xi,yj,tk)	
 I(xi,yj)	
 g2(xi yj)	


Image Data	


Correlation	


Normalization	


Figure 2: XPCS MapReduce phases illustrating data flow
for the multi-tau autocorrelation (top) and normalization
(bottom) algorithms.

PIPELINE
Phases of this process are combined together using a

workflow pipeline. It uses an industry-standard messaging
system for reliable task sequencing and triggering. Generic
actors handle common tasks such as file transfers.
Technique-specific analysis code is implemented or called
from custom actors that may be written in Java, C++, or
Python. Experiment metadata and provenance information
is stored along with raw and analyzed data in a single HDF5
file that is manipulated by different stages of the pipeline.

The pipeline is a series of stages connected by message
queues. Stages do something; they may be the acquisition
software, they may be data analysis software, or they may
transfer files. Stages may be written in a variety of different
programming languages, including C++, Java, and Python.
Message queues are how stages are connected. When a
stage is done with its task, it queues up a message for the
next stage in line. That stage will eventually get to that
message and process it. The message queues themselves
are JMS message queues. The ActiveMQ implementation
[7] of the JMS standard is used.

A stage in the pipeline is composed of two classes:
the Director and the Actor. The Director is the interface
to the message queue, in this case to the ActiveMQ
implementation of JMS. It handles the core infrastructure.
It only needs to be written once per programming language
and then reused. The Actor is the part that actually does the
work. It is the part that interfaces with the acquisition, runs
analysis, or starts a file transfer. It may save results, and it
should report status back to the pipeline so that the rest of

Figure 3: A sample HDF5 file showing the structure of data
and result tags.

the workflow and the user know its status.
The Director handles everything to do with the message

queue system. This includes processing incoming and
outgoing job messages, constructing signal messages for
the next stage, and handling control signals for killing or
restarting jobs. Additionally, the Director keeps a history
of all messages being processed by the queuing system.

The Actor is a simple class definition that requires the
implementation of two methods: execute and abort. Both
methods should return a status to the pipeline. The status
is used to determine whether to launch the next stage and
displays status to the user via the pipeline’s GUI. Figure 4
summarizes these components.

RESULTS

The use of an automated workflow pipeline greatly
reduces the turnaround time between the acquisition
system and the final computed correlation functions. This
allows users to adjust experimental conditions in near
realtime, thus achieving better utilization of beam time.
Here we discuss the performance of individual components
that make up the pipeline.

Acquisition

The system is in production use at the APS 8-ID-I
beamline using a 60-Hz (soon to be 200-Hz), 1-megapixel
area detector collecting up to 120,000 frames.

WECOBA04 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1006C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing



Director	


topic	


queue	


queue	


queue	


History 
Producer	


Job Message 
Producer	


Execute Actor	


Control Topic 
Consumer	


Job Message 
Consumer	


Update 
Provenance	


Pipeline Stage	


Director	


Actor	


queue	
 queue	

stage	
 stage	
 stage	


Overview	


incoming 
messages	


outgoing 
messages	


Figure 4: Overview of the pipeline architecture (top).
A pipeline stage that performs an action (center). The
pipeline Director that regulates messages and activities of
the pipeline (bottom).

MapReduce
The Hadoop MapReduce implementation runs on a 96-

core distributed-memory cluster with 2 GB of memory per
core and 5 TB of HDFS storage space. Table 1 shows the
performance of this system for datasets of varying sizes and
numbers of frames. The MapReduce system scales very
well as the number of frames and file sizes increase. The
Hadoop MapReduce implementation replaces our previous
MPI-based implementation [8, 9] for production use.

Table 1: Autocorrelation Performance Results

Size Number of Frames Time

45 GB 120,000 10 min
20 GB 60,000 5 min
11 GB 20,000 9 min
3.9 GB 20,000 6.5 min
0.8 GB 80,000 3 min
0.8 GB 20,000 2.5 min
0.4 GB 40,000 1 min

Workflow
The message-passing interface between different

components of the workflow pipeline is based on a
proven system for passing messages between distributed
components at very high rates. In order to ensure
maximum availability of this critical component we use
the failover capabilities of ActiveMQ. A redundant server
runs alongside the primary server and can take over in case
the primary server goes down.

The combination of parallel analysis algorithms and
a state-of-the-art messaging backend to tie together
different pipeline components allow us to achieve near
real-time analysis and maximize the overall efficiency
of the equipment. However, there are still potentials
for improvement in performance, especially related to
continually increasing detector speeds.

ACKNOWLEDGMENT
We’d like to thank Mitchell McCuiston and Marcin

Sikorski for their programming effort and domain
knowledge, and Roger Sersted, Brian Robinson and
Kenneth Sidorowicz for their technical support.

REFERENCES
[1] M. Sikorski, A.R. Sandy, and S. Narayanan, “Depletion-

Induced Structure and Dynamics in Bimodal Colloidal
Suspensions,” Phys. Rev. Lett. 106. 188301-1 (2011).

[2] T. Madden, P. Fernandez, P. Jemian, S. Narayanan, A.
R. Sandy, M. Sikorski, M. Sprung, and J. Weizeorick,
“Firmware Lower-Level Discrimination and Compression
Applied to Streaming X-ray Photon Correlation Spectroscopy
Area-Detector Data,” Rev. Sci. Instrum. 82. 075109 (2011).

[3] Hadoop, wiki.apache.org/hadoop.

[4] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” Communications of the ACM
51(1), (2008) 107.

[5] Hierarchical Data Format version 5 (HDF5), 2000-2010.
http://www.hdfgroup.org/HDF5.

[6] The Scientific Data Exchange,
http://www.aps.anl.gov/DataExchange.

[7] Apache ActiveMQ, http://activemq.apache.org.

[8] M. Sikorski, Z. Jiang, M. Sprung, S. Narayanan, A. R. Sandy
and B. Tieman, “A graphical user interface for real-time
analysis of XPCS using HPC,” Nucl. Instrum. Method A
649(1), (2011) 234.

[9] B. Tieman, S. Narayanan, A. Sandy and M. Sikorski,
“MPICorrelator: A parallel code for performing time
correlations,” Nucl. Instrum. Method A 649(1), (2011) 240.

Proceedings of ICALEPCS2013, San Francisco, CA, USA WECOBA04

Data Management and Processing

ISBN 978-3-95450-139-7

1007 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


