
HIGH SPEED DETECTORS: PROBLEMS AND SOLUTIONS

N.P. Rees, M. Basham, F.J.K. Ferner, U.K. Pedersen,

T.S. Richter, J.A. Thompson

Diamond Light Source Ltd, Didcot, Oxfordshire, UK.

Abstract

Diamond has an increasing number of high speed de-

tectors primarily used on Macromolecular Crystallography,

Small Angle X-Ray Scattering and Tomography beamlines.

Recently, the performance requirements have exceeded the

performance available from a single threaded writing pro-

cess on our Lustre parallel file system, so we have had to

investigate other file systems and ways of parallelising the

data flow to mitigate this. We report on the some compar-

ative tests between Lustre and GPFS, and some work we

have been leading to enhance the HDF5 library to add fea-

tures that simplify the parallel writing problem.

INTRODUCTION

When Diamond Light Source, a third generation syn-

chrotron light source, entered service in 2007 no beamlines

had any detectors that even approached saturating a 1 Gi-

gabit/sec Ethernet (GbE) link. Our first detector to exceed

this data rate came on line in mid 2011, and in the 2 years

since this time 8 beamlines have acquired detectors requir-

ing 10 GbE links, and we are now working on detectors

that exceed 10 GbE speeds by almost a factor of ten. This

increase in peak detector data rates by nearly two orders

of magnitude in a few years has challenged our software

and hardware architectures. This paper presents a snapshot

of the current status and developments we are undertaking

which will help manage these high data rates.

HARDWARE SETUP

File System Configurations

In order to support the high performance detectors at Di-

amond, two different high performance file systems have

been deployed. Lustre[1] has been used sucessfully for

some time now and GPFS[2] has recently been put into

production. Both use Data Direct Networks (DDN) disk

backends, a DDN SFA10K for Lustre and a SFA12K-40

for GPFS. Both backends provide sufficient bandwidth to

not cause any bottleneck during these tests and this has

been verified using sgpdd survey. Each file system has

4 servers connected to the disk arrays via InfiniBand (IB)

and to the network with multiple 10GbE links. The Lustre

Object Storage Servers (OSSs) are Dell PowerEdge R610s

with 2x10GbE Link Aggregation Control Protocol (LACP)

bonded links and the GPFS Network Shared Disk (NSD)

servers are Dell PowerEdge R720s with 4x10GbE LACP

bonded links.

Clients

Most of the benchmarks discussed have been run on six

clients in parallel. To simplify the network configuration,

two different sets of clients have been used for the 1GbE

and 10GbE tests. The test clients are either Dell R610s,

R620s or R720s and all are using Dell Broadcom network

interface cards (NICs).

Network Interconnect

The network at Diamond is built around two sepa-

rate core switches (one Force10 C300 and one Extreme

Networks X8) with clients and servers usually connected

through smaller edge switches (see Fig. 1).

Each edge switch is connected to both core network

switches using one or more 10GbE links bonded using

LACP. The edge switches act as a router for all clients con-

nected to them. Equal Cost Multi-Path (ECMP) and Open

Shortest Path First (OSPF) protocols are used to make effi-

cient use of all available links.

The GPFS NSD servers are connected to a stack of two

Extreme Networks X650 switches using 4x10GbE LACP

links per server. The X650 stack in turn has 8x10GbE

LACP bonded uplinks into each of the two core switches

providing a total of 16x10GbE to the network.

The Lustre OSSs are an exception to the standard con-

figuration. The two pairs of OSSs are each connected to

one of the two core network switches with 2x10GbE LACP

links in this case, the cores switches act as a router for these

clients.

The 10GbE clients are connected via 1x10GbE links to

one Extreme Networks X670 switch with 3x10GbE LACP

uplinks to each of the core network switches.

The 1GbE Excalibur detector[3] nodes are connected to

a Avaya 56XX switch which has 1x10GbE uplink to each

core network switch.

PERFORMANCE

The parameter space for a given detector system writ-

ing to a parallel file system is very complex and calls for

an understanding of the operation and configuration of file

system, network and compute nodes. The detector readout

design, number of pixels per chip and per module, as well

as the experimental set-up and post processing application

(disk reader), also effect the choice of I/O pattern.

Measuring the basic I/O performance to a parallel file

system is a relatively simple task for system administra-

tors. However, the I/O pattern defined by using a particular

detector system often yields quite different results from a

WECOBA07 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1016C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing



6x 1GigE

attached hosts

6x 10GigE

attached hosts

GPFS NSD Server (x4)

(4x10GbE each)

 1GbE copper

10GbE fibre

pair of core switches

client switch 1

2x Lustre OSS

stack of two Extreme Networks X650

client switch 2

2x Lustre OSS

Figure 1: Network Diagram.

simple binary dump to disk. The challenge is to choose

a sensible I/O pattern for a particular detector and to tune

the available parameters of the system for optimal perfor-

mance.

It is not feasible to simply scan through all available pa-

rameters in a brute-force approach. Initial starting points

have been chosen based on knowledge of the file systems

and detectors as well as best practices for using the HDF5

library[4] and the available file systems.

Benchmarking Tools

The measurements in this report have been set up based

on the Excalibur detector use-case scenario. This set-up

comprises a 6 node cluster where each node is connected

to a detector element and equipped with individual 1 GbE

links. For development and testing we also use a second

6 node cluster with 10 GbE links. The clusters are con-

nected to central parallel storage systems based on Lustre

and GPFS.

Benchmarking applications “ior”[5] and a Diamond de-

velopment “phdf5write” are used to measure performance

and tune parameters. The “ior” disk I/O benchmarking ap-

plication with the HDF5 back-end is appropriate for system

administrators to benchmark and test the settings of cluster

nodes and the file system servers. The “phdf5write” ap-

plication, in contrast, writes HDF5 datasets in exactly the

same way as detectors write datasets; appending 2D images

to an extending 3D dataset. It also provides timestamps

for each individual write operation and utilizes the HDF5

chunking feature and the parallel variant of the HDF5 li-

brary. To measure and diagnose the write performance of

the cluster, file system and configuration of a particular de-

tector data acquisition system we use a combination of both

these tools.

HDF5 Parameters

The HDF5 library provides access to set a number of

low-level parameters, tuning the performance for different

I/O patterns and file systems:

• The boundary alignment parameter. This is file system

related and is set to 1 MB for Lustre and 4 MB for

GPFS, to match the respective file system block sizes.

• The Write block (or chunk) size for a single individual

write. This is 1 MB per node in the Excalibur detector

case, however the HDF5 chunk sizes are set up to do

4 MB writes. This is obviously more efficient in the

GPFS case but for the Excalibur detector it has proven

more efficient on Lustre in combination with a 4 MB

Stripe Size.

Selecting an appropriate chunk pattern is a balance be-

tween write and read performance. Optimal performance

depends heavily of the pixel dimensions of the detector

imaging chip. For efficient I/O, each block (or chunk)

which is written to disk must fit neatly inside a multiple

of the file systems transfer block size. For example, the

Lustre “Stripe Size” is a multiple of 1MB. For real detector

Proceedings of ICALEPCS2013, San Francisco, CA, USA WECOBA07

Data Management and Processing

ISBN 978-3-95450-139-7

1017 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



systems this is often difficult as the horizontal pixel reso-

lution is rarely a power of 2. On the Excalibur detector,

the chip size is 256x256 and each readout node receives

a 1MB block of data per frame which is ideal. However,

there is a difficulty in that there are requirements for hav-

ing blank (auto filled) pixels in the locations of the frames

where there are physical gaps between sensors and mod-

ules. These gaps essentially overflow the clean 1MB chunk

boundary, making write operations inefficient (see Table 1).

Table 1: Excalibur Detector Parallel Write Performance

For Datasets With And Without Gaps

Gaps Frame Size [MB] Write rate [MB/s]

None 1.00 104

Chip gaps 1.02 49

Module gaps 1.18 46

The HDF5 library also utilises a binary search tree for

indexing the individual chunks on disk. The size of the

branches can be tuned. However, when writing huge files,

and using a large search tree, write operation halts as all

nodes process (full load of CPU) to grow another branch

on the tree. The next major release of HDF5 (V1.10) intro-

duces a file format change which allows dataset that extend

only in one dimension to use an “Extensible Array” for in-

dexing, which will overcome this deficiency if the dataset

has only one unlimited dimension.

Measurements

The measurements using ior demonstrate the basic I/O

performance of the two Diamond file systems. Table 2 lists

the results of writing from 12 processes on 6 nodes (2 pro-

cesses per node) to 12 individual files and to a single shared

file, for Lustre and GPFS, using the “ior” application.

Table 2: Data Rate Measurements Using “ior”

File System Multiple Files Single File

[MB/s] (stddev) [MB/s] (stddev)

GPFS 3148 (123) 3044 (115)

Lustre 3518 (154) 1328 (96)

The measurements with the “phdf5write” application are

more realistic in terms of choice of I/O pattern in relation

to real detector acquisition use-cases. Data consist of 2D

blocks which are appended to a chunked 3D dataset. Table

3 lists the results, from the same cluster. There is a scatter

in repeated measurements and sometimes GPFS is faster

than Lustre, but this is an average of a number of measure-

ments. Note that “phdf5write” currently only writes to a

single shared file.

The “phdf5write” application provides a more detailed

view of the performance of the individual write operations,

and further investigation reveals that the performance is

not balanced across all nodes. Each node writes the same

Table 3: Data Rate Measurements Using “phdf5write”.

Data rate is (total data)/(total time), so is dominated by the

time taken by the slowest node.

File System Single File [MB/s]

GPFS 943

Lustre 1160

amount of data and all nodes write to a single shared file.

Figure 2 shows the I/O performance for each individual

write on the two file systems. The total amount of data

written in the test is about 580 GB across all nodes. This

figure highlights the fact that some nodes write to disk sig-

nificantly faster than other nodes in the cluster. This be-

haviour does not appear to be related to the node configu-

ration because the relative performance of the nodes varies

randomly from run to run - however, for Lustre, in partic-

ular, the performance of any particular node appears to be

reasonably consistent in one given run, and so the aggregate

instantaneous throughput drops off as the nodes complete

writing.

0

100

200

300

400

500

d
a
ta

 r
a
te

 [
M

B
/s

]

0 100 200 300 400 500 600 700
time [s]

0

100

200

300

400

500

d
a
ta

 r
a
te

 [
M

B
/s

]

Figure 2: Six Node Parallel Write To GPFS (top) And Lus-

tre (bottom). All nodes write the same amount of data, but

performance varies between nodes.

HDF5 DEVELOPMENTS

As seen above, creating data files from high performance

detectors is often a balance between storing data in one file

or many files. If the data is in one file, the number of file

system operations is minimised, but contention is created

since many processes must access the file and a single piece

of data corruption could make a large dataset unuseable. At

Diamond we have standardised on the NeXus format for

data storage, using HDF5 as the underlying file format. In

order that we can develop systems that can handle the large

data rates, we have been working with The HDF Group

to define and implement the following extensions to the

HDF5 programming interface.

WECOBA07 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1018C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management and Processing



Single Writer Multiple Reader

Single Writer Multiple Reader (abbreviated to SWMR

and pronounced swimmer) allows data analysis programs

to read an HDF5 file while it is still being written. As

detectors get faster the traditional approach of writing

one data file per frame leads to thousands or millions

of files - often in a single directory. To mitigate this,

data is written in the form of data cubes, with the third

axis being a frame number or time axis. However, in

the current version of HDF5 files cannot be read while

still being written and so data analysis and display must

be postponed until a whole series of frames have been

acquired. This is unsatisfactory and is being addressed

by the SWMR development. A set of requirements and

use cases describing this functionality was produced and

a design study (funded by Diamond Light Source) has

been concluded to validate the design assumptions (see

ftp://ftp.hdfgroup.uiuc.edu/pub/outgoing/SWMR/).

At this point Diamond Light Source and Dectris Ltd are

funding The HDF Group to provide production code for

this product. There is still a funding shortfall which means

that the code will not be able to be released for general

support within the HDF5 codebase, and we are looking for

further funding partners to make this happen.

Virtual Datasets

As the performance tests have shown, whilst HDF5 has

an ability to write multiple data streams in parallel to a sin-

gle file, the performance is usually lower than writing to

multiple independent files because of file contention. In ad-

dition, in this mode the data cannot be compressed and in

some scenarios this can also reduce the effective through-

put dramatically.

Virtual datasets are an extension to HDF5 which allows a

single virtual dataset to be composed of data from datasets

in multiple underlying files. This circumvents both the

compression and file contention issues, whilst hiding the

multiple underlying files from any program trying to access

the data after it is written. A set of requirements and use

cases describing this functionality has also been produced,

and we intend to fund this work after the completion of the

SWMR work.

CONCLUSIONS

In working with high speed detectors we have found that

the system performance is significantly lower than the sum

of individual component performance. Some general con-

clusions are:

• Standard HPC benchmarking tools such as ior often

do not represent the performace seen in a real applica-

tion.

• Lustre may be faster at managing the pHDF5 con-

tention between nodes than GPFS is.

• GPFS is faster at streaming data from one node, if

there is no contention.

• Writing separate files is faster than using pHDF5 to

enable all nodes to write to one.

Having said this, we feel these should be balanced by

caveats that we are still actively learning and we have more

experience with Lustre than GPFS. However, in order to

address these issues we are actively pursuing modifications

to the HDF5 library to enable process to write separate data

files that can be viewed as parts of a single dataset.

REFERENCES

[1] http://www.lustre.org.

[2] http://www.ibm.com/systems/software/gpfs/.

[3] J.A. Thompson, I. Horswell, J. Marshal, U.K. Pedersen,

S. Burge, J.D. Lipp, and T.Nicholls. “Controlling the EX-

CALIBUR Detector”. In Proceedings of ICALEPCS2011,

2011.

[4] H Howison, Q. Koziol, D. Knaak, J. Mainzer, and J. Shalf.

“Tuning HDF5 for Lustre File Systems”. Technical report,

The HDF Group, 2010.

[5] W. Loewe, T. McLarty, C Morrone, and R Klundt. “IOR -

Parallel filesystem I/O benchmark”. https://github.com/

chaos/ior.

Proceedings of ICALEPCS2013, San Francisco, CA, USA WECOBA07

Data Management and Processing

ISBN 978-3-95450-139-7

1019 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


