
RENOVATION OF THE CERN CONTROLS CONFIGURATION SERVICE

L. Burdzanowski, C. Roderick CERN, Geneva, Switzerland

Abstract
The Controls Configuration Service (CCS) is a key

component in CERN’s data driven accelerator Control
System. Based around a central database, the service also
provides a range of client APIs and user interfaces -
enabling configuration of controls for CERN’s accelerator
complex. The service has existed for 35 years (29 based
on Oracle DBMS) [1]. To cater for changing requirements
and technology advances there has been substantial
evolution of the CCS over time. Inevitably this has led to
increases in CCS complexity and an accumulation of
technical debt. These two aspects combined have a
negative impact on the flexibility and maintainability of the
CCS, leading to a potential bottleneck for Control System
evolution. This paper describes on-going renovation
efforts (started mid-2014) to tackle the aforementioned
issues, whilst ensuring overall system stability. In
particular, this paper covers architectural changes, the agile
development process in place - bringing users close to the
development cycle, and the deterministic approach used to
treat technical debt. Collectively these efforts are leading
towards a successful renovation of a core element of the
Control System.

INTRODUCTION
The CERN Control System is a data-driven multi-layer

infrastructure including:
 Low-level hardware and software – e.g. timing

infrastructure, equipment drivers, Front-End
Computers (FEC), end-user developed C/C++
binaries representing operational “devices”, etc.

 Middleware layer – e.g. read/write access to
processes running on FECs and Role Based Access
Control (RBAC).

 High-level software – e.g. high-level settings
management, data acquisition and archiving.

The Controls Configuration Service (CCS) helps bind all
of the layers together by providing them with complete and
coherent configurations that are necessary for the proper
functioning of the Control system [2].

The current architecture of the CCS is based on:
 An Oracle database (2-node RAC cluster)
 A set of high-level client Java APIs
 Database level client APIs (PL/SQL interfaces)
 Numerous Graphical User Interfaces based on

proprietary Oracle technologies: Application
Development Framework (ADF) and Oracle
Application Express (APEX).

The database is implemented using a relation model, with
approximately 700 domain tables and ~7GB of core
domain data (excluding binary, log and history data –
which collectively accounts for ~115GB).

The criticality of the service for safe operation of the
accelerators chain is high (though not required for their
safe shutdown): The CCS is essential for proper accelerator
configuration and start-up – especially during Technical
Stops when equipment and other components of the
Controls System undergo maintenance and upgrades.

The CCS exists for 35 years, during which the scope,
architecture, implementation technology and development
methodology have kept evolving. In the middle of 2014 the
first major service-wide renovation and overhaul has
started – marking the beginning of a new chapter in its long
history.

RENOVATION STRATEGY
The motivation behind the complete renovation of the

service can be summarized as the need to increase service
flexibility while lowering total cost of development, and to
advance service functionality to the state required by
activities planned for the next CERN Long Shutdown (LS2
– scheduled start early 2019).

The cornerstones of the renovation strategy are:
 Suppression of the technical debt accumulated over

the years.
 Changes in the overall architecture
 Adaptation of the Lean software development

process [3].
All of these aspects are closely related as suppression of
technical debt is essential in order to advance the system
architecture, while taking proper architectural and design
decisions prevent further “erosion” in the system and limit
existing technical debt. The adapted software development
process facilitates implementing changes: enabling a lower
overall cost of development and increased agility. The first
two aspects are a mid–to–long–term perspective (from
mid–2014 to the start of LS2). The implementation of the
Lean software development process is already well
advanced and can be considered finished by the end of
2015.

In order to fully understand the context of the renovation
efforts it is necessary to briefly look back at the evolution
of the CCS scope and technologies used.

Service Evolution
The scope of the CCS was initially limited to the PS

(Proton-Synchrotron) complex controls system, meaning
that the service and its database were oriented towards a
concrete accelerator and its specific control system. The
first relational database was introduced in 1986. Over the
years the scope grew following the evolution of CERN’s
accelerator complex [4]. 1995 marks the introduction of
graphical user interfaces (GUI) based on Oracle Forms and
PL/SQL Web Toolkit (OWA). The first Java based data
access API was implemented in 1999 facilitating access for

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF006

Control System Upgrades

ISBN 978-3-95450-148-9

103 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

high-level applications. Starting in 2006, another Oracle
based GUI solution (ADF – a Java Server Faces
implementation) was put in place to replace existing OWA
and Forms applications. In 2009, APEX (a subsequent
framework for building database-driven GUI’s) was
adapted alongside ADF.

Besides the technical changes, the service role and scope
has been expanding in recent years:

 Multiple additional device-property models were
introduced,

 The Front-End Software Architecture (FESA)
framework reached the next major version [5],

 The service incorporated configurations specific to
various sub-systems like:

o Beam Interlock System,
o Power Converters,
o Role Based Access Control.

Together with these changes certain functionalities of the
service became partially suppressed, specifically legacy
high-level settings management, for which the
functionality was incorporated into LSA [6] for the
majority of the accelerators.

The following patterns emerge when we look back at the
aforementioned evolution: reliance on Oracle proprietary
GUI technologies, and the progressive growth of the
service well beyond its original system design and
architecture that was tightly coupled to a specific
accelerator. Both of these aspects have contributed to the
current state of the service and triggered the renovation.

ADDRESSING TECHNICAL DEBT
The evolution of every complex hardware and software

system inevitably results in increased technical debt and
progressive erosion. The availability of new technologies
and solutions, as well as the human factor of growing
experience – keep changing the perception of quality and
adequacy of former technical decisions [7].

In most cases, end users are not directly aware of the
technical debt but as software engineers we should
perceive it as negative value. It is adverse to system
architecture and design, which are planned, deliberate and
visionary. By clearly establishing the system boundaries
and facilities to assess and measure its evolution the
technical debt can be addressed whilst minimizing impact
on the end users.

Accidental Complexity
At its basis the technical debt is equal to accidental

complexity happening in the system. On contrary to
deliberately complex solutions for equally complex
problems the accidental complexity happens by itself
naturally along evolution of the system.

System complexity can be described by both quantitative
and qualitative factors. For the CCS, the quantitative
factors include: counts of tables, views, triggers, PL/SQL
packages, number of grants, grantees, accounts, lines of
code, length of packages and procedures, levels of views
nesting etc. All such factors can be measured and

automatically classified as a potential problem based on
established thresholds. The qualitative factors might be
based on quantitative data but cannot nor should not be
automated. Such factors are based on experience and often
common sense – ultimately a human factor. For example,
de-normalization of a database table may be justified by
performance requirements or for the sake of clarity in a
model, although in most cases it is a sign of shortcomings
in the design.

The majority of complexity in a database-oriented
system is caused by dependencies (direct and indirect), but
rarely by algorithmic complexity. Examples of direct
dependencies are relations between objects, database views
referencing tables or other views, PL/SQL packages
executing code based on database structures. Indirect
dependencies include aspects like dynamic/background
execution or exposure of the database objects to external
users (grants) – an inevitable need contributing to coupling
between systems.

Targeted Re-Factoring
In order to guarantee system stability during renovation

– specifically when re-factoring areas with high technical
debt – a methodical targeted approach with a clear strategy
is essential. The CCS renovation efforts fall into two
categories: targeted and ad-hoc re-factoring.

Ad-hoc refactoring is considered as a natural part of
regular development and does not require extensive
planning or analysis. For example: small improvements in
the code base like eradication of “dead-code”, addition of
missing test cases, updates to stale documentation, and re-
naming inadequately named objects. In general, such
activities shouldn’t take more than an additional 20% of the
base development time needed to deliver the required
functionality.

Targeted re-factoring is predefined as a concrete group
of tasks based on the following criteria:

1. Identify boundaries – to clearly know when the
activity should finish.

2. Identify clear gains – to justify the effort. The gains
should be tangible, based on facts, and ideally
quantifiable.

3. Identify risks – to know the impact both within – and
outside the service.

4. Define rollback / fall-back strategy – to limit any
potential negative impact, mainly in critical areas.

5. Estimate and prioritize – to realistically plan the
effort alongside regular development activities.

The value to be gained from the re-factoring can be
classified into distinct areas, and includes in descending
order of importance:

1. Consistency – i.e. limiting the likelihood of data
corruption and/or of non-deterministic states.

2. Performance – improving the response times for
data reporting and querying for clients.

3. Maintenance – lowering the total cost of
development, likelihood of introducing new errors,
and the usage cost paid by clients (e.g. by obscurity
APIs or lack of documentation).

MOPGF006 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

104C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

4. Agility – ensuring the extendibility of the
architecture and limiting the cost / time of delivering
new features to clients.

By following the assessment criteria above and
understanding their associated gains, it is possible to
identify and prioritize renovation activities alongside
regular development.

Determinism and Static Code Analysis
Static code analysis (SCA) is the analysis of computer

software source code on the contrary to dynamic analysis,
which is based on code execution. SCA can be applied to
any type of software including databases like Oracle. In
this case the analysis includes both database structures
(tables, views, constraints, indices, etc.) and executable
stored procedural code (PL/SQL packages and triggers).

To match our needs a custom SCA framework has been
developed which enables analysis within the database
engine. The framework includes a pre-defined set of
analysis rules, which can be customized and extended. The
analysis can be executed on demand or periodically, and
generates reports summarizing the number of rule
violations, severity and links to the source. These reports
are used to identify areas for in-depth analysis and planning
of the re-factoring. Below is an example of a metric
indicating the evolution of the count of invalid objects over
the past year:

Figure 1: Count of invalid objects in development database,
aggregated per months.

The analysis results, fluctuations and evolution of the

metrics are the inputs to qualitative assessments and serve
as a basis for future planning. The metrics cover various
aspects ranging from standardisation concerns (e.g. code
not adhering to naming standards, usage of disallowed or
obsolete functions, etc.) to abstract complexity of the
system (expressed via factors such as code size, table sizes,
triggers counts, nesting of database views). With SCA in
place we are able to evaluate our efforts over time, relying
on factual data rather than assumptions.

ARCHITECTING FOR THE FUTURE
The renovation and supporting changes in system

architecture fall into four main categories: suppression of
accidental complexity and lowering overall system
complexity, context based access to the data, phasing-out

of proprietary GUI technologies, and applying a system
wide infrastructure for tracing, auditing and monitoring.
Combined, these categories form the foundations for
simpler, easier and agile development, with an increased
quality of service.

The accelerator controls system domain is inherently
complex; the corresponding software components are
therefore inevitably complex accordingly. During the
process of suppressing accidental complexity / lowering
overall complexity, we have started to progressively adapt
an event driven architecture which has proved to increase
cohesion and lowered coupling of system components.
New developments and on-going re-factoring conforms to
GRASP [8] (General Responsibility Assignment Software
Patterns) patterns of Object-Oriented design, tailored to the
world of relational databases. To support these changes we
have adapted Commons4Oracle (C4O) – a set of PL/SQL
libraries for Oracle database, which is actively developed
in the CERN Controls group. The library assures further
standardization and foundations for future development.
Moreover it streamlines solutions in the CCS with other
core database projects of the Controls group thus enabling
transfer of knowledge and expertise.

Based on direct feedback from CCS users and domain
experts we are gradually increasing the scope of context
surrounding the data entreated to the system. By utilizing
Commons4Oracle extensions, a set of high-level domain
specific events is being implemented. Triggering of such
events can be based on direct user actions, or a workflow
based transition. By attaching state information to core
domain entities in the system (e.g. devices), we can now
automatically notify users interested in a given “domain
event”. For example when a computer hosting a device
changes its state, the responsible for the device can be
notified and take actions if necessary. It is important to add
that such notifications may be filtered based on criteria
specified by individual users.

The dedicated CCS GUIs are the primary means for end
users to access or edit data. On average per day there are
over 150 distinct user sessions (from a total of ~400 distinct
registered users). Experiences of past years as well as user
feedback contributed to the decision to phase-out the
existing proprietary technologies in favour of widely
adapted solutions of Java based RESTfull services and
HTML5/JavaScript web interfaces. In addition this
technology stack steadily gains popularity within the
software engineering community and in turn facilitates
hiring of well-trained specialists.

With tracing and auditing extensions in place, not only
the time or user behind a given action is captured, but also
contextual information like client IP address, database
session and transaction IDs, and name of the program unit
and invoked action. This information is used to augment
historical data tracing, with which changes to any entity in
the system are precisely tracked and can be presented back
to users in a context specific manner (e.g. as a log of
differences starting from a specific moment in time or by
presenting dependencies between objects in a human
readable way). This system-wide architectural extension

0

200

400

600

800

1000

1200

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF006

Control System Upgrades

ISBN 978-3-95450-148-9

105 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

considerably limits the time needed to support users in
investigating suspected data problems, and potentially
recovering data.

PRAGMATIC AGILITY
As a part of CERN Controls System the CCS is actively

used and maintained on regular basis. Its development
lifecycle is similar to software products released to end-
users that have continuous support for the new extensions
and improvements. Such a lifecycle requires
responsiveness when addressing end-user’s needs but also
requires realistic planning which fits into the tight schedule
of accelerators operations. The challenges of undergoing
renovation and aforementioned aspects motivated the
adoption of a Kanban development process [9].

The Kanban emphasizes focusing on continuous
improvement, importance of human factors and bringing
maximum value to the organisation. Over just a few
months the new Kanban development process has been
implemented, and in less than six months the efficiency of
the team increased noticeably. By visualising the work on
a Kanban board, bottlenecks were quickly identified (e.g.
too much work in progress, too many unrelated tasks
started, or too many new features waiting in quality
assurance queue). By not relying on fixed development
iterations / sprints – trust from end-users increased as their
requested features and bug-fixes are not systematically
subjected to prolonged wait times due to extensively
planned ahead sprints. The agility and reactivity of the
team and CCS as a whole has increased thanks to the
Kanban / Lean philosophy of just-in-time delivery and
constant focus on activities that bring the most value to
end-users. By separating planning and reviews into short-
term (weekly / monthly) and mid- term (quarterly / yearly)
the CCS team balances providing new functionality within
realistic time frames with reacting quickly (hours instead
of days) in case of urgent problems.

Thanks to the new methodology, the overall
development throughput has increased. More importantly
the satisfaction of both CCS users and team members has
increased. Changing the way tasks are prioritized and
visualized has led to a reduction in pressure and stress on
developers. CCS end-users are now much more closely
involved in the development process and act as true
stakeholders thanks to effective visualization of work in
progress and clearly identified stages of the development
cycle. These human factors are proving to be essential to
the success of the on-going renovation.

In retrospective, the adaptation of a Kanban approach
has already resulted in high returns on the time invested
into configuring supporting tools to the CCS team needs,
and regular discussions and analysis of the changes being
implemented. The returns from the Kanban are that more
time is spent on delivering actual value, and assuring that
new features and improvements are not over-planned nor
hurried to production (which would result in faults and
frustration of the end-users). Regular retrospectives and

critical analysis of changes applied to the working process
have positively transformed the way the CCS team works.

CONCLUSIONS
The renovation of a mission critical service with many

years of history is a challenge. Alongside changing
requirements, growing expectations and needs to
consolidate various sub-systems of the Control System, the
CCS started to play an even more important role during
recent years. The necessity to adapt to these changes and
satisfy new requirements is the driver for the on-going CCS
renovation. Progressively reducing technical debt
increases overall agility, but more importantly it also helps
to design a better system for the future. CCS users now
have a much better understanding than previously of the
value of these changes and together with their increased
satisfaction the renovation and technical debt reduction is
perceived as added value. The Kanban way noticeably
improved the CCS team efficiency and contributed to
increased end-user satisfaction. New architecture solutions
lay foundations for an advanced, cohesive and agile system
that embraces the context and workflows of how CCS users
work. The renovation started over a year ago and marked
the beginning of a new and exciting era in the long history
of the Controls Configuration Service of the CERN
Controls system.

REFERENCES
[1] J. Cuperus et al., ICALEPCS1997 – ID085.
[2] R. Gorbonosov, The Control Systems of the Large

Hadron Collider, CERN Academic Training Lecture
Regular Program, http://cds.cern.ch/

[3] T. Ohno, Toyota Production System: Beyond Large-
Scale Production, ISBN 978-0-915299-14-0,
Productivity Press, (1998).

[4] J. Cuperus et al., ICALEPCS2003 – WE114.
[5] M. Arruat et al., ICALEPCS2007 – WOPA04.
[6] G. Kruk et al., ICALEPCS2013 – MOCOBAB05.
[7] MM. Lehman, Laws of Software Evolution Revisited,

EWSPT '96.
[8] C. Larman, Applying UML and Patterns – An

Introduction to Object-Oriented Analysis and Design
and Iterative Development (3rd ed.), ISBN 0-13-
148906-2, Prentice Hall, (2005) [2004].

 [9] H. Kniberg, Lean from the Trenches: Managing
Large-Scale Projects with Kanban (1st ed.), ISBN
978-1934356852, Pragmatic Bookshelf, (2011).

MOPGF006 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

106C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

