
COMPONENT DATABASE FOR THE APS UPGRADE*

S. Veseli, N.D. Arnold, D.P. Jarosz, J. Carwardine, G. Decker, N. Schwarz, Argonne National
Laboratory, Argonne, IL 60439, USA

Abstract

The Advanced Photon Source Upgrade (APS-U)
project will replace the existing APS storage ring with a
multi-bend achromat (MBA) lattice to provide extreme
transverse coherence and extreme brightness x-rays to its
users. As the time to replace the existing storage ring
accelerator is of critical concern, an aggressive one-year
removal/installation/testing period is being planned. To
aid in the management of the thousands of components to
be installed in such a short time, the Component Database
(CDB) application is being developed with the purpose to
identify, document, track, locate, and organize
components in a central database. Three major domains
are being addressed: Component definitions (which
together make up an exhaustive "Component Catalog"),
Designs (groupings of components to create subsystems),
and Component Instances (“Inventory”). Relationships
between the major domains offer additional "system
knowledge" to be captured that will be leveraged with
future tools and applications. It is imperative to provide
sub-system engineers with a functional application early
in the machine design cycle. Topics discussed in this
paper include the initial design and deployment of CDB,
as well as future development plans.

OVERVIEW
The Component Database (CDB) application is a tool

for organizing and tracking components and designs used
for the APS storage ring upgrade. It helps capture
component documentation, provides a repository for
inspection and measurement data (e.g., travellers), and
supports logging of component history through the
component’s life cycle.

CDB also serves as a user portal for finding all known
information about a particular component or a design. To
that end, it provides links and interfaces to external
systems commonly used at APS, such as various drawing
and document management systems, procurement
applications, etc.

Although CDB has been designed and developed from
the ground up in order to satisfy APS-U requirements, in
many respects it draws ideas from IRMIS2 [1], which is
still in use by Controls Group at APS.

SOFTWARE COMPONENTS
CDB is built around relational database, web portal and

REST web service [2] technologies. The architecture,
shown in Fig. 1, provides users with a number of options
for accessing the system. At the same time, it also offers

developers a fair amount of flexibility for integration with
external applications. The most important CDB system
components are described below in more details.

Figure 1: CDB system architecture. Dashed lines indicate
future components.

Relational Database
The database contains all system data, other than

uploaded documents. Users cannot access the database
directly. Except for a small number of administrative
tools, other software components access the database
through object-relational mapper (ORM) libraries and
APIs, which provide an abstraction layer from the rest of
the system. CDB currently uses a MySQL database [3].

Document Repository
The Document Repository is a storage area designated

for use and managed by the CDB software. It stores
various documents, images, and log attachments uploaded
by CDB users.

Web Portal
The User Web Portal is a Java EE application running

in a GlassFish application server [4], and built using
modern technologies like Java Persistence API (JPA) and
Java Server Faces (JSF) [5]. In particular, CDB uses the
PrimeFaces component suite [6].

Web Service
A REST Web Service and its Client APIs provide

programmatic interfaces for accessing the system that are
based on JSON data-interchange format [7] over the

* Argonne National Laboratory's work was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under contract DE-AC02-06CH11357.

Proceedings of ICALEPCS2015, Melbourne, Australia THHC2O02

Control System Upgrades

ISBN 978-3-95450-148-9

1127 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 2: Major CDB domains and their relationship with external sources of information (depicted as rectangles with
green background).

HTTPS protocol. The service is implemented in Python
using CherryPy web framework [8] and SQLAlchemy
ORM [9].

CDB users and administrators can write scripts and
higher-level applications on top of the provided Python
and Java APIs. It is worth pointing out that the CDB Web
Service supports user sessions. This allows users to add
new or modify existing CDB objects. Also, note that some
of the Web Portal functionality, such as integration with a
drawing management system used at APS, also requires
accessing the Web Service.

Command Line Interfaces
Command Line Interfaces (CLIs) are built on top of

REST Client APIs and expose Web Service interfaces for
use within a UNIX shell. All CLI tools have a common
set of options including those for command usage, debug
level, output display format, etc. In addition, all
commands have uniform session and error handling,
which simplifies shell scripting.

SYSTEM FUNCTIONALITY
CDB software captures information about component

definitions (to form a “Component Catalog”), component
instances (“Inventory”) and designs, which represent
groupings of components used to create subsystems.
These three major domains are illustrated in Fig. 2.

Component Catalog
A core CDB purpose is to provide a “Component

Catalog” for the MBA. This catalog contains all
components planned for use on the new machine, both
custom-fabricated and commercially available. For
example, each design of a gate valve, magnet, or a

vacuum chamber and each unique VME module will have
an entry in the Component Catalog.

The minimum metadata required for a component
definition is a component name, type (representing
generic components used on an accelerator), owner and
owner group. Optional metadata may include a
description, sources (i.e., vendors), and various other
properties, such as images, links to documentation and
external systems, etc. The system also supports “complex
components” or “assemblies” via a special property that
links a component to its associated design.

Inventory
Component entries in the Component Catalog describe

a specific component design or a particular model number
of a commercially available component. The actual
hardware device fabricated or procured is referred to as a
“Component Instance” of that component.

Component instances require inspection, testing,
storage, installation, and maintenance. Their tracking
becomes an inventory management challenge. Each
component instance for the MBA will be uniquely
identified with a QR code. If possible, a sticker with the
QR code will be adhered to the device in a visible
location. A database entry will relate the component
instance to a particular component definition; thereby
allowing all relevant information about this component
instance to be referenced using the QR code.

Figure 3 shows an example of the component instance
details view in CDB Web Portal. Both the component
and component instance properties are displayed, and
additional information is easily accessed from links in the
property tables.

THHC2O02 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1128C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

Figure 3: Component instance view in CDB Web Portal.

Designs
The CDB allows a user to define “Designs”, which
consist of several components grouped together to fulfill a
particular functional requirement. One example would be
a design for a BPM Processing System consisting of an
analog front end chassis, an ADC chassis, four cables for
the BPM buttons, and two cables between the other units.

Key concepts of Designs are described below:
 Designs are made up of “design elements”.
 Each design element may be a component, a

complex component (assembly), or another design
(allows hierarchical designs).

 Each “design element” is given a unique element
name, normally derived from the official naming
convention.

“Designs” are the mechanism by which an exhaustive Bill
Of Materials (BOM) can be acquired for the MBA.
Groups will define designs necessary to fulfill their
particular technical system requirements and by so doing
will be contributing to a detailed list of the all the
components required to build the new machine. Since
this data resides in a relational database it can be
“viewed” or analyzed in numerous ways.

Properties
The information one would like to capture in the CDB

varies widely depending on the type of component or
design being defined. Hence, it is impractical to attempt
to define a single set of metadata that would be common
to all objects. To provide a flexible mechanism for
capturing object-dependent information, the CDB
associates properties with individual components,
designs, and instances. This allows each object to have
its own unique set of metadata.

For example, a VME Chassis component might have
properties of number of slots, height, and AC power
requirements. In contrast, a quadrupole magnet

component would have properties of maximum current,
slot length, weight and maximum field.

Some of the most important features of CDB properties
are as follows:
 Property types may be associated with a restrictive

set of “allowed values”.
 Property types may be linked to a unique “handler”

class, which enables different view or edit modes in
the Web Portal, or integration with an external
system.

 A time-stamped history of each property value is
kept to provide a historical log of each property.

Authentication and Authorization
The CDB allows any user to view and retrieve

information without logging into the system. However,
any changes to the system, such as adding new or editing
existing entities, requires users to be registered,
authenticated, and (in case of modifying existing objects)
authorized to make changes. The authorization model is
based on an object’s user and group ownership, and the
user’s group membership. This model has been
implemented for both Web Portal and Web Service. This
allows, for example, adding new components or loading
lattice designs using scripts reading spreadsheets.

DEVELOPMENT PROCESS
The CDB development process is based on lessons

learned from developing similar systems in the past. Keys
for a successful tool include management support,
flexible software design, and an agile development
process driven by user requirements and the need to
provide solutions for real problems. Hence, our goal is to
get new features into users’ hands as quickly as possible,
and our planning for future software releases heavily
relies on user feedback from previous versions.

Proceedings of ICALEPCS2015, Melbourne, Australia THHC2O02

Control System Upgrades

ISBN 978-3-95450-148-9

1129 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

FUTURE PLANS
Near term plans include the addition of design

instances, adding relationships between design elements
(e.g. powered-by, controlled-by, etc.), and ability to
capture cable connections.

CONCLUSION
The Component Database (CDB) application has the

potential to capture a complete Bill of Materials for the
new APS-U accelerator well before the installation
timeframe. Having an exhaustive BOM in a relational
database will facilitate careful planning and tracking of
the construction and installation process, a prerequisite
for an ambitious schedule anticipated by the APS-U
project.

REFERENCES
[1] D.A. Dohan and N.D. Arnold, “Integrated Relational

Modeling of Software, Hardware, and Cable
Databases at the APS”, p. 365, Proceedings of
ICALEPCS 2003, Gyeongju, Korea (2003).

[2] R.T. Fielding and R.N. Taylor, “Principled design of
the modern Web architecture”, p. 407, Proceedings of
ICSE 00, Limerick, Ireland (2000).

[3] MySQL website: https://www.mysql.com
[4] GlassFish website: https://glassfish.java.net
[5] For overview of Java EE features see

http://www.oracle.com/technetwork/java/javaee/over
view/index.html

[6] PrimeFaces website: http://primefaces.org
[7] JSON website: http://json.org
[8] CherryPy website: http://cherrypy.org
[9] SQLAlchemy website: http://sqlalchemy.org

THHC2O02 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1130C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Upgrades

