
HDB++: A NEW ARCHIVING SYSTEM FOR TANGO
L. Pivetta, C. Scafuri, G. Scalamera, G. Strangolino, L. Zambon,

Elettra Sincrotrone Trieste, Trieste, Italy
R. Bourtembourg, J.L. Pons, P. Verdier, ESRF, Grenoble, France

Abstract
The TANGO release 8 led to several enhancements, in-

cluding the adoption of the ZeroMQ library for faster and
lightweigh event-driven communication. Exploiting these
improved capabilities, a high performance, event-driven
archiving system written in C++ has been developed. It
inherits the database structure from the existing TANGO
Historical Data Base (HDB) and introduces new storage ar-
chitecture possibilities, better internal diagnostic capabilities
and an optimized API. Its design allows storing data into
traditional database management systems such as MySQL or
into NoSQL database such as Apache Cassandra. The paper
describes the software design of the new HDB++ archiving
system, the current state of the implementation and gives
some performance figures and use cases.

INTRODUCTION
The TANGO archiving system is a tool that allows to

store the readings coming from a TANGO based control
system into a database. The archived data are essential for
the day by day operation of large facilities, such as long
term monitoring of subsystems, statistics, correlation of
parameters or comparison of operating setups over time.

To take advantage of the fast and lightweight event-driven
communication provided by TANGO release 8 [1] with the
adoption of ZeroMQ [2], a novel archiving system for the
TANGO Controls framework [3] has been designed and
developed in collaboration between Elettra and ESRF.

DESIGN GUIDELINES
A number of requirements have been taken into account

during the design phase. The HDB++ archiving system
must fully comply to the TANGO device server model, with
two immediate benefits. First, all the required configuration
parameters are stored to and retrieved from the TANGO
database; some of these parameters are, for user convenience,
duplicated into a dedicated table of the HDB++ schema by
a mechanism that guarantees the consistency of the copy.
Second, the HDB++ archiving system inherits the TANGO
scaling capability: any number of EventSubscriber instances
can be deployed according to the desired architecture and
overall performance.
The publish/subscribe paradigm is available in TANGO

via the event subsystem. More in detail, the archive event
is provided for archiving purposes and can be triggered on
threshold comparison and/or periodic basis. The HDB++
architecture is fully event based; therefore, a part of HDB++
setup consists of conveniently configure TANGO device
servers to send events as required.

Two TANGO device servers have been developed. The
EventSubscriber, also referenced as archiver, is in charge of
gathering the values from the TANGO devices and storing
them into the historical database. To address the require-
ments coming from large systems the need to distribute the
workload over a number of archivers shows up. A Con-
figurationManager TANGO device server will assist in the
operations of adding, editing, moving and deleting an At-
tribute to/from the HDB++ archiving system. A specific
library, exposing a suitable API, addresses the historical
data extraction from the archive.

The task of each HDB++ archiving system component is
sharply defined; low layer devices, e.g. archivers, have no
dependency against the ConfigurationManager, the extrac-
tion library or the graphical user interfaces and, possibly,
can be deployed standalone. Also, the HDB++ architec-
ture has been designed to easily support different SQL and
NoSQL database engines: an abstraction library decouples
the interface to the database back-end from the implemen-
tation. Adding a new back-end is just matter of writing the
code for the specific implementation; this has been done,
as an example, during last year to introduce the support for
Cassandra [4].

EVENT SUBSCRIBER
The EventSubscriber TANGO device server is the core

of the HDB++ archiving system. It subscribes to archive
events for the specified Attributes list, stored into a Property
in the TANGO database, as well as a number of additional
parameters, such as the hostname and port number where
the back-end is running, the name of the database and the
username and password to be used.

A dedicated thread is in charge of event subscription and
callbacks execution; the callbacks, acting as producers, put
the complete data structure of the received events in a FIFO
queue, protected by a suitable locking mechanism. The
thread and the callbacks must be able to handle an arbitrary
number of events, possibly limited just by the available mem-
ory and the required performances. One additional thread,
acting as consumer of the FIFO, is in charge of writing the
data into the database. Moreover, a high-mark threshold is
setup on the FIFO queue to alert for an overloaded EventSub-
scriber.

The EventSubscriber device server allows to perform the
following operations:

• add/remove an Attribute to/from archiving
• start/stop the archiving for all Attributes
• start/stop the archiving for one Attribute
• read the status of an Attribute
• read the list of Attributes currently archived (started)

WED3O04 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

652C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation



• read the list of Attributes currently not archived
(stopped)

• read the number/list of Attributes in charge
• read the configuration parameters of each Attribute
• read the number/list of working Attributes
• read the number/list of faulty Attributes
• read the number/list of Attributes pending in the FIFO
Working at the EventSubscriber level implies that the

database entry and the archive event parameters have to be
already configured. Besides, no action is performed on the
archived data when removing an Attribute, which means
that the data remain available in the historical database.
Special care has been reserved to the error management.

One NULL value with time stamp is inserted whenever the
archiving of an Attribute is stopped due to error. Moreover,
if an error occurred, the corresponding Attribute is marked
as faulty in the archiving engine and the error description
stored. In case the archiving was suspended due to an error, it
is automatically resumed when valid data is available again.
The quality factor of the Attribute is also stored into the
historical database. Exploiting these features, a client could
be fully aware of the archiving status of an Attribute; in
addition, dedicated alarms can be configured in the TANGO
Alarm System to asynchronously inform about the status of
the archiver device.

The EventSubscriber TANGO device server also exposes
some additional figures of merit, such as:

• for each instance, total number of records per time
• for each instance, total number of failures per time
• for each Attribute, number of records per time
• for each Attribute, number of failures per time
• for each Attribute, time stamp of last record

These numbers can sum up in a counter, which can be reset
every hours/days/weeks, to rank each Attribute in term of
data rate, error rate etc. This allows preventive maintenance
and fine tuning, detecting, for instance, when an Attribute
configuration is wrong because the variation threshold is
lower than the noise level. These statistics are a key el-
ement for qualifying the health of the system. All these
Attributes are archived themselves to enable a follow-up ver-
sus time. For each Attribute, the EventSubscriber TANGO
device server also computes the minimum and maximum
processing and storing times, which helps discovering pos-
sible bottlenecks.

CONFIGURATION MANAGER
Adding an Attribute to the archiving system may require

creating the new entry into the database tables, setting up the
Attribute archive event configuration and assigning the At-
tribute to one of the archivers. Moreover, large systems may
need to distribute the workload over several EventSubscriber
device servers. A special TANGO device server, the Config-
urationManager, has been developed to simplify the above
steps and to help monitoring the whole HDB++ archiving
system. Adding an EventSubscriber device to the Configu-
rationManager pool enables the management. This leaves

open the possibility of deploying un-managed archivers, if
needed.
The ConfigurationManager device server is able to per-

form the following operations on the managed EventSub-
scriber pool:

• handle the request of archiving a new Attribute
– create an entry in the database if not existing
– setup the Attribute archive event configuration
– assign the new Attribute to one of the archivers

• move an Attribute from one archiver to another
• show the Attribute/archiver coupling
• start/stop the archiving of an Attribute
• remove an attribute from archiving
The ConfigurationManager also exposes some Attributes

to keep trace of the global statistics:
• total number of EventSubscribers
• total number of working/faulty attributes
• total number of events per second
• overall minimum and maximum processing and storing
time

These attributes could be themselves archived to enable a fol-
low up versus time. The statistics window GUI for MySQL
back-end at the ESRF is shown in Fig. 1.

Figure 1: MySQL back-end statistics. X: archivers, Y1:
Attributes [red faulty/green ok], Y2: events number [blue].

To guarantee the consistency of the archiving setup, the
ConfigurationManager implements a strict sequence when
adding an Attribute to the archiving system. More in de-
tail, at first the historical database entry for the Attribute is
created, then the archive event parameters are configured,
or checked if already existing, and finally the Attribute is
assigned to the desired archiver.

HISTORICAL DATABASE
Currently the HDB++ archiving system supports

MySQL [5], a relational database management system, and
Cassandra as back-ends. Cassandra is a distributed NoSQL
database where the data is spread over a number of nodes.
Its architecture provides replication, high availability with
no single point of failure and linear scalability, meaning that

Proceedings of ICALEPCS2015, Melbourne, Australia WED3O04

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

653 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



higher performances can be achieved simply adding more
nodes. A detailed description of the Cassandra support in
HDB++ is available in [6].
Some shared libraries provide the methods for writing

to the database back-end. These libraries, written in C++,
are addressed to the EventSubscriber TANGO device server
and their main purpose is to provide an abstraction layer.
Actually, some shared objects are available implementing
the abstraction layer and the specific interface:

• libhdb++: database abstraction layer
• libhdbmysql: legacy HDB schema support for MySQL
back-end

• libhdb++mysql: HDB++ schema support for MySQL
back-end

• libhdb++cassandra: HDB++ schema support for Cas-
sandra back-end

These libraries allow reusing the EventSubscriber, the Con-
figurationManager and the GUIs without changes. The
HDB++ archiving system can be easily extended to support
additional database engines, such as Oracle, PostgreSQL or
other NoSQL databases, just writing the specific support
library.

The database schema characteristics are common to both
MySQL and Cassandra back-end. The att_conf table asso-
ciates the attribute name with a unique ID and selects the
data type; it’s worth noting that the att_name row always
contains the complete FQDN, e.g. with the hostname and
the domain name. The att_history table stores the times-
tamps of the operations made on each Attribute, such as
adding, removing, starting or stopping the archiving. Each
TANGO data type has a dedicated table containing the At-
tribute ID, the Attribute data timestamp, the event timestamp,
the database insert timestamp and the data value. Comparing
the timestamps, any possible performance bottleneck can
be easily detected. With respect to the legacy HDB schema,
the new HDB++ schema introduces some relevant changes:

• µs timestamp resolution
• no per-attribute additional tables; the number of tables
used is fixed and does not depend on the number of
archived attributes

• specific TANGO data type support

CONFIGURATION TOOLS
A graphical user interface for the ConfigurationManager

has been developed. Written in Java, the HdbConfigurator
GUI presents a Jive-like interface, showing on the left side
the device tree and on the right side the selected archiver
with the lists of the relevant started and stopped Attributes.
On bottom left, the archive event parameters of the selected
Attribute appear. A screenshot of the HdbConfigurator GUI
is shown in Fig. 2.
To use the HdbConfigurator, the HdbManager envi-

ronment variable, containing the ConfigurationManager
TANGO device server to be used, has to be exported. Then,
once the desired archiver has been selected, the device tree
can be browsed for the requested Attribute. A right-click on

Figure 2: HdbConfigurator GUI.

the Attribute name opens a pull-down menu; in the popup
window the user can specify the archive event parameters,
if needed, or mark the event pushed by code flag. A list of
Attributes, stored in a file, can be added to the archiving
system using the File/Open menu of the HdbConfigurator
GUI. Moreover, whenever a large number of Attributes has
to be added to the archiving system, using a programmatic
approach could be convenient. A client application for the
ConfigurationManager TANGO device server can consist of
a few lines of Python or Java and address in a very efficient
and effective way the above requirement, especially when
also the archive event parameters for each Attribute have to
be specified.

DATA EXTRACTION

A specific API has been defined to address the historical
data extraction. The data extraction library shall be able
to deal with event based archived data. The possible lack
of data inside the requested time window shall be properly
managed:

• returning some no-data-available error: in this case
the reply contains no data and an error is triggered;

• enlarging the time window itself to comprehend some
archived data: the requested time interval is enlarged
to include some archived data. No fake samples are
introduced to fill the values in correspondence of the
requested timestamps;

• returning the value of the last archived data anyhow: the
requested time interval is kept and the last available data
sample is returned. The validity and the consistency of
the data is guaranteed when the archive event change
threshold is configured; care must be taken with the
dataset in case of periodic archiving event;

Two libraries have been developed implementing this API:
the first, written in C++ is dedicated Qt/Qtango based GUIs
or to C++ TANGO device servers; the second, written in
Java, has been used for the HdbViewer GUI and is a native
choice for Java device servers.

WED3O04 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

654C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation



The HdbExtractor++ multithread library allows fetching
the data from the legacy HDB and the new HDB++ MySQL
schema in a simple Object Oriented way. An additional
module provides a Qt interface to the HdbExtractor++ and
a dedicated GUI, exploiting the MathGL framework, aimed
at displaying mono and bidimensional data over time. Also,
possible errors conveniently stored in the database can be
found an displayed. Figure 3 and 4 show a multiline plot
and a surface plot.

Figure 3: HdbExtractor++ multiline plot.

Figure 4: HdbExtractor++ surface plot.

The HdbViewer Java framework, in addition to the legacy
ESRF historical database support, allows retrieving the data
from the new Cassandra back-end as well as managing the
Cassandra partitioning period. The classic table display of
the HdbViewer GUI is shown in Fig. 5. Multiline bidimen-
sional plots are also supported.

PERFORMANCE
Currently more than 6800 Attributes are archived with

the HDB++ at Elettra, on both the legacy HDB schema and
the new HDB++ schema using MySQL as back-end; respec-
tively 30 and 20 instances of the EventSubscriber have been

Figure 5: HdbViewer, classic table display.

deployed, each one managing a very different number of
Attributes, spanning from just one to more than one thou-
sand per archiver. A single EventSubscriber device server,
running on an unloaded machine, is capable to handle thou-
sands of events per second, sustained rate, with easy; peaks
of a few tens of thousands can also be handled exploiting
the FIFO for caching. However, in this scenario, or at even
higher rates, care has to be taken with respect to the database
back-end that can become the bottleneck.

Similarly, more than 7300 Attributes are archived with the
HDB++ at the ESRF using the new HDB++ schema on both
MySQL back-end, exploiting 32 archivers, and Cassandra
back-end, using 34 archivers.

CONCLUSION
The HDB++ archiving system, though still under devel-

opment, is in production at both Elettra and ESRF sites
since almost two years. The ConfigurationManager device
server in conjunction with the HdbConfigurator GUI greatly
simplify the utilization. The administration of an HDB++
archiving system is quite easy, especially for anyone with
some TANGO experience, although the installation is still
somehow tricky. Some Debian packages are foreseen to
simplify the installation procedure for selected platforms
and will be made available in the next future.

REFERENCES
[1] A. Götz et al., “TANGO V8 - Another turbo charged major

release”, ICALEPCS’13, San Francisco, USA (2013).

[2] ZeroMQ: http://zeromq.org

[3] TANGO Controls: http://www.tango-controls.org

[4] Apache Cassandra: http://cassandra.apache.org

[5] MySQL: http://dev.mysql.com

[6] R. Bourtembourg et al. “How Cassandra improves perfor-
mances and availability of HDB++ TANGO archiving system”
WEM310, These Proceedings, ICALEPCS’15, Melbourne,
Australia (2015).

Proceedings of ICALEPCS2015, Melbourne, Australia WED3O04

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

655 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


