
SMOOTH MIGRATION OF CERN POST MORTEM SERVICE TO A

HORIZONTALLY SCALABLE SERVICE

C. Aguilera-Padilla, S. Boychenko, M.Dragu, M.A. Galilee, J.C. Garnier, M. Koza, K. Krol,

R. Orlandi, M.C. Poeschl, T.M. Ribeiro, M. Zerlauth, CERN, Geneva, Switzerland

Abstract

The Post Mortem service for the CERN accelerator com-

plex stores and analyses transient data recordings of var-

ious equipment systems following certain events, like a

beam dump or magnet quenches. The main purpose of this

framework is to provide fast and reliable diagnostic to the

equipment experts and operation crews to help them de-

cide whether accelerator operation can continue safely or

whether an intervention is required. While the Post Mortem

System was initially designed to serve the CERN Large

Hadron Collider (LHC), its scope has been rapidly ex-

tended to include as well External Post Operational Checks

and Injection Quality Checks in the LHC and its injector

complex. These new use cases impose more stringent time-

constraints on the storage and analysis of data, calling for a

migration of the system towards better scalability in terms

of storage capacity as well as I/O throughput. This paper

presents an overview of the current service, the ongoing

investigations and plans towards a scalable data storage so-

lution and API, as well as the proposed strategy to ensure

an entirely smooth transition for the current Post Mortem

users.

INTRODUCTION

The Post Mortem (PM [1]) service has been providing

data collection, storage and analysis of LHC event data

since 2008. The PM system usage grew significantly from

the first use cases covering the understanding of the con-

ditions in which the machine aborted its operations: fault

on an equipment, powering event, etc. It currently cov-

ers the Injection Quality Checks (IQC [2]) from the SPS

to the LHC and the Extraction Post Operational Checks

(XPOC [3]) to verify that the beam extraction from the

LHC was correctly executed. A new use case was just im-

plemented to analyze every single cycle of the SPS. A pos-

sible integration of LINAC4 is under study. The initial de-

sign of the PM systems was to collect data on every beam

dump, e.g. every 8 hours under normal operation condi-

tions, or multiple times an hour when problems arise. The

newer use cases call for real-time constraints. The analysis

result for XPOC must be delivered within 10 seconds, an

SPS cycle analysis must be given within 7 seconds in order

to use the result on the next cycle. A LINAC4 cycle lasts

about 1 seconds so an analysis that interlocks the next cycle

requires real-time constraints for the data transfer protocol

and for the analysis framework.

In its current design, the PM system provides a good

vertical scalability, meaning that resources can be added

to the nodes with minimum downtime and impact on the

service availability. This way it could satisfy the original

use case and withstand the first extensions. The increase

in data throughput to the PM system and the SPS use case

integration both demonstrated that its horizontal scalability

must be improved to sustain all its current and future use

cases as well as to accommodate larger events and analysis

processes.

The first Section presents the current functional design

of the Post Mortem service. The second Section presents

the architecture of the PM system to support the functional

design and identifies the current shortcomings. The third

Section presents the improvements we propose, the steps

that are planned to achieve the migration, and the first re-

sults of the migration.

FUNCTIONAL BEHAVIOR

The LHC control devices are continuously recording in-

formation about their current state in a rolling buffer which

they are ready to dump on demand from an external event,

or on their own trigger. The data dump is identified by the

device information and by an “event time stamp” given by

the device. Typical events are beam dump, powering faults,

self triggers, etc. If the data dump could not be performed

completely and the data were not serialized to the perma-

nent storage despite the fallback mechanism, the device is

warned so that it can store the data locally on the front-end

controller storage and try to dump them later on.

All the collected data dumps are forwarded to the Post

Mortem event-builder. The event-building is data driven.

When it receives a first data dump coming from a control

device, it sets a data collection time window. All the subse-

quent data dumps arriving during this time window with an

event time stamp close to the one of the first one will be as-

sociated to the event. The event-builder identifies and char-

acterizes the type of the event according to the data dump

patterns. If the event-builder only received data from power

converters and quench protection systems, it is considered

a powering event. If it received data from every LHC sys-

tem, this is a global event which is in average 190 MB.

The event is then analyzed by a hierarchy of analysis

modules. Modules can be dedicated to the analysis of a

single type of system, or they can perform correlation be-

tween multiple systems.

WEPGF047 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

806C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation



ARCHITECTURE

Control devices around the LHC use a Post Mortem

client library to create and dump data to the Post Mortem

service. The data are first received by Front-End servers

that are dedicated to a system type, e.g. one Front-End

server will collect all the data from the Quench Protection

System, another one will collect all the data from the LHC

Beam Dump System, as shown in Figure 1. The destination

Front-End system is selected by the client library.

QPS Device BLM Device

Analysis Server

BIS Device

PM2 Back EndPM1 Back End

Spare BLM

Collector

PM2PM1

BLM

Collector

QPS

Collector

BIS

Collector

Figure 1: The Post Mortem data collection. The dashed

lines represent the redundant collection path to the sec-

ondary Back-End server. The event-builder and the anal-

ysis tools are only attached to the main PM1 Back-End

server. Devices can also dump to spare Front-End servers

if the main one is not reactive.

Static Load Distribution

At first, the data flow was optimized between the re-

dundant server nodes so that the load coming from the

Front-End servers dump requests would be more or less

evenly distributed. The data sizes, patterns and frequen-

cies changed with time. The initial load-distribution is not

adapted anymore and one server is clearly more stressed

than the other. For a global event, in the current situation,

one node collects in average 125 dumps that amounts to

40 MB of compressed data, while the other node collects

in average 4073 dumps that amount to 150 MB. The total

size of a global event collection varies depending on the

cause of the event as some devices send buffers only when

they are concerned. Other types of events follow different

distributions of data per nodes. In addition, the PM system

accepts a continuous flow of data. Due to the way the load

distribution is implemented, it is difficult to scale it to cover

optimally all use cases.

Monolithic Implementation

The production Front-End and Back-End servers are cur-

rently implemented in C++. The application protocol guar-

anteeing to the device that its data dump was completely

stored is based on synchronous calls. The device dumping

process will know that the data are completely written if

the call to dump data returns successfully, e.g. without any

exception.

The data collection servers are implemented in such a

way that they do not handle data dumps in parallel but

rather serializes them. The bigger the event, the more time

is spent on collecting the data. It happens very rarely that

a dumping device receives an RDA timeout while dumping

data.

Data Consistency

Front-End servers store the data on a fast access non-

permanent file system. They forward the data to Back-End

servers that will store it on a permanent storage and notify

the event-builder. There are two Back-End servers for re-

dundancy. The Back-End processes enrich the data with in-

formation, like the reception time on the back-end system,

or the path to the data on the file system. While the PM ser-

vice ensures data storage redundancy, the data consistency

cannot be ensured by standard tools due to the information

added by the Back-End processes.

Data Storage Exposition

The file system is exposed via NFS to all the Post

Mortem users, e.g. the analysis services and the equipment

experts running custom analysis written in LabVIEW or

Java. Until now it was not possible to perform analysis in

another technology. Clients access the file system struc-

ture directly, either to use the raw data or to convert it into

other formats and store it back on the Post Mortem stor-

age. Therefore, PM data are duplicated to serve different

use cases.

When the file system is under heavy load it causes delays

in the file writing, which subsequently causes delays in the

handling of the dump request by the data collection servers,

which ultimately can trigger a time out in the dumping de-

vice.

Shortcomings

We identified the following shortcomings in the current

architecture:

• Static load distribution

• Lack of data consistency verification

• Storage architecture and data format exposed to the

end-users

• Data duplication

• File system performance limits and back pressure

• Monolithic implementation of data collectors

• Neither delivery nor ordering guaranty of data dumps

All this leads to performance limitations of the PM sys-

tem that impact the implementation of new use cases. This

calls for upgrades of the current system. The shortcomings

are mainly due to in-house design of redundancy and dis-

tribution paradigms. The goal of the upgrade is to re-use

available technologies to achieve fully horizontally scal-

able data collection, storage and analysis.

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF047

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

807 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



The data transfer from devices to the event-builder relies

entirely on the CERN Control’s MiddleWare (CMW [4])

RDA protocol. The current data collection uses RDA2

based on CORBA [5], with an on-going migration to RDA3

based on ZeroMQ [6]. The migration from RDA2 to RDA3

is on-going at the level of control devices. As long as some

devices rely on RDA2, the current PM infrastructure must

be maintained. There are currently 999 PM clients based on

RDA2 and 915 based on RDA3. Multiple control devices

can share the same RDA.

The challenge is therefore to upgrade the PM system

while keeping it backward compatible for clients that

would migrate to RDA3 slowly.

ROADMAP

The long term plan is to make the Post Mortem service

horizontally scalable in all aspects: data collection, storage

and analysis. This requires a drastic modification of the

storage system. To modify the data format and the data

storage, it is necessary to encourage users to use a common

API to read and dump data as a first step. That way the data

format and storage will be considered as a black box and it

will be then possible to modify it at will.

Data Collection

The client API used to dump data is providing proper ab-

straction to the users. The API is implemented in C++ and

in Java. It exposes the RDA serialization of the data to the

user. This means a user knows RDA is used to dump data,

and it knows that the data are serialized with CMW/RDA

for the transport to the Post Mortem service. The client API

currently supports RDA2 and RDA3 protocols. The expo-

sure of the RDA protocols through this API is not a big

issue, as user processes already rely heavily on these tech-

nologies. The client API is now integrated into the FESA

framework [7], which is used by most of the control devices

at CERN.

The missing feature for the data collection is dynamic

load distribution, meaning that a client would dump Post

Mortem data to any of the available data collection servers.

This feature must be integrated into CMW/RDA3 before

being used in the PM system. Alternatives could be to rely

on other message protocols, like the underlying ZeroMQ

protocol. The challenge is not to introduce a single point

of failure.

Having introduced a dynamic load distribution, the client

library will not be coupled anymore to specific PM targets.

This means that a client will not dump to a specific data

collection process anymore, but to any PM data collection

process. This will increase the availability of the service

and its maintainability. It will also allow the PM system

not to rely on the Front-End/Back-End process anymore,

but on a single layer of data collection process, as shown in

Figure 2.

Data Access

The APIs to access data are implemented in Java or

based on files. They both rely on the NFS exposure of the

data.

A REST (Representational State Transfer) API is cur-

rently being implemented. The aim of this API is to serve

multiple language technologies. Many users would like to

perform analysis in Python or MATLAB. It will also pro-

vide data to the LabVIEW analysis framework. This way,

no user will directly depend on the data serialization format

or the file system. The data are exposed in plain JSON [8]

or in Apache Avro [9]. The REST API is built incremen-

tally. It currently provides the minimum amount of features

for users to search for data using a few basic criteria. The

aim of the first release is to provide the features that users

implemented on top of the storage system, e.g. extracting

directly one signal from the data without reading it entirely.

This will encourage them to use the API and hide the file

details. The overhead of accessing data through the REST

API is very low. It adds an average delay of 8 ms to the file

access, and a worst case delay of 73 ms when retrieving

today’s largest PM data.

The long term goal for the Post Mortem API is to enable

complex queries, e.g. “Get all the Quench Protection Data

when the Beam Energy was greater than 6.5 TeV”. This

can be achieved by extending the first release, adding in-

dexing and correlating features. Open source products will

be studied more thoroughly to address this requirement.

Storage

Once the data will be accessed only through the Post

Mortem APIs and not directly by the users, the main up-

grade of the Post Mortem storage will be possible.

The goal here is to provide complete data redundancy

and integrity checks, as well as horizontal scalability. The

requirements for the Post-Mortem storage are:

• Data replication

• High availability

• Error detection and correction

• High storage capacity

• High read and write throughput

The PM data which can be considered as semi-

unstructured data. The structure is defined by the users

and evolves with time. Quench Protection System data

from 2008 does not look like data from 2015. In these

conditions, it is difficult to restructure the data in a differ-

ent format to store it. The data can only be stored in the

same structure it was sent, as an immutable snapshot. Dis-

tributed object storage systems can therefore be considered

as a good alternative to the current file system implemen-

tation. Distributed file systems are also a good option as

they share many features with distributed objects storage

systems.

Numerous solutions are available on the market. The

Ceph [10] object storage, the Gluster [11] and HDFS [12]

file systems are being considered for this upgrade. The plan

WEPGF047 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

808C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation



is to make an inventory of these technologies and to evalu-

ate them according to our storage requirements.

QPS Device

Data Collector Data Collector Data Collector

Load Balancer

Distributed Storage

BLM Device

Metrics

Figure 2: The targeted simplified Post Mortem architec-

ture. Devices dump Post Mortem data to Data Collectors

that are part of a load-balancing scheme. This way the

load can be distributed among the Data Collectors of the

Post Mortem cluster. The Data Collector that processes the

dump writes the data to the distributed storage. The data

are automatically replicated by the storage infrastructure.

The way to serialize files will also evolve. The plan is

to enhance the usage of PM data for analysis. Considering

that users may run analysis only on parts of the data dumps,

the files must be splittable. Compression is also required to

optimize the occupied space in the storage system. Indeed

the signals often contain zeros and therefore have a high

compression rate. After a thorough evaluation of multiple

technologies, Apache Avro has been selected. The files can

be compressed and still splittable at the same time, as the

compression is performed on blocks of the Avro format,

and not on the entire file itself. Avro also brings the flexi-

bility required for the data structure to evolve. There is no

need to generate specific classes to interpret the data, as the

data themselves can embed the schema required to interpret

them. The data will therefore still be self-described. The

fact that Avro is a key technology for Mapreduce [13] jobs

is another motivation for the choice of this file format.

Upgrade Steps

In order to perform an upgrade as smooth as possible for

the users, the following steps are necessary:

1. Provide APIs to deprecate direct storage access

(a) Unique API for all languages to access data

(b) Data dumps from both CMW RDA2 and RDA3

2. Commission new data storage and serialization in par-

allel to operations

(a) Keep the current storage and its APIs running

(b) Automatic or semi-automatic data collection for-

warding to new storage

(c) Run spare data analysis tools on new storage us-

ing same compatible API

3. Decommission old PM system

(a) Transfer all data to new storage

(b) Move production APIs to new storage, keeping

them backward compatible

(c) Switch off

The first step is currently in the development phase and

incremental releases are already performed for production

usage. Storage solutions are being studied in parallel. As

the PM system will not expose the storage nor the data for-

mat, it will be easier to perform migrations in the future.

CONCLUSION

The current Post Mortem system is still fulfilling its

use cases successfully, and a second instance has been de-

ployed to perform the SPS Quality Checks. The restart of

the LHC after the first long shutdown and the growing need

of more accurate analysis on higher data resolution in a de-

terministic time has pushed the Post Mortem system to its

limits. The limitations of the current systems are clearly

identified and the work already started to scale horizontally

the Post Mortem system. This entire upgrade is the op-

portunity to make the system more maintainable and ease

the future upgrades, providing a clear segmentation of the

different areas of concern: APIs, storage architecture, data

format, data analysis. It is also the opportunity to bring new

features, e.g. allowing any language to work on PM data.

Improving the storage layer is furthermore the opportunity

to move toward data analytics on Post Mortem data, and

enabling correlation of data from other CERN data storage

as presented in [14].

REFERENCES

[1] O. Andreassen et al., “The LHC Post Mortem Analysis

Framework”, proc. of ICALEPCS 2009, Kobe, Japan.

[2] V. Kain et al., “Injection Beam Loss and Beam Quality

Checks for the LHC”, proc. of IPAC10, Kyoto, Japan.

[3] N. Magnin et al., “External Post-Operational Checks for the

LHC Beam Dumping System”, proc. of ICALEPCS 2011,

Grenoble, France.

[4] A.Dworak et al., “The new CERN Controls Middleware”,

proc. of CHEP 2012, New-York, NY, USA.

[5] http://www.omg.org/spec/CORBA/3.3/

[6] http://zeromq.org/

[7] M.Arruat et al., “Front-End Software Architecture”, proc. of

ICALEPCS 2007, Knoxville, TN, USA.

[8] http://www.json.org/

[9] http://avro.apache.org

[10] http://www.ceph.com/

[11] http://www.gluster.org/

[12] http://hadoop.apache.org/

[13] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters”, proc. of OSDI 2004, San

Francisco, CA, USA.

[14] S. Boychenko et al., “Toward a Second Generation

Data Analysis Framework for LHC Transient Recording”,

WEPGF046, these proceedings, ICALEPCS’2015, Mel-

bourne, Australia (2015).

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF047

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

809 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


