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Abstract 
Optimization tools are needed in every step of an 

accelerator project, from the design to commissioning to 
operations. However, different phases have different 
optimization needs that may require different 
optimization algorithms. For example, a global optimizer 
is more appropriate in the design phase to map the whole 
parameter space whereas a local optimizer with a shorter 
path to solution is more adequate during operations to 
find the next best operating point. Different optimization 
algorithms are being used in accelerator physics, we 
mention in particular standard algorithms such as least 
square minimization and evolutionary algorithms such as 
genetic optimization. Over the years, we have developed 
several optimization tools for beam tracking codes to 
include 3D fields and SC effects. Including particle 
tracking in the optimization process calls for parallel 
computing. We will review the different algorithms and 
their implementation and present few highlight 
applications. 

OPTIMIZATIONS IN ACCELERATOR 
PHYSICS 

Optimizations are heavily used in the design phase of 
an accelerator project, but they are much less used to 
support the commissioning and operations once the 
machine is built. During the design phase, optimizations 
are used in the design of the different beam line elements: 
magnets, rf cavities, etc. They are also used for the lattice 
optimization to find the appropriate sequence of elements 
and drift spaces. Once the lattice is defined more 
optimizations are used to determine the appropriate 
element settings for optimal beam dynamics and beam 
quality. This is often iterated with the lattice design. Once 
the accelerator is built, more effort is dedicated to 
hardware problems than to developing a realistic model of 
the machine. We believe that using the appropriate 
optimization tools during the commissioning should help 
better understand the machine’s behaviour and expedite 
the delivery of the first beam. Fits to reproduce the 
experimental data using a model should significantly 
improve the predictability of the model to use for real-
time machine operations. Often, simplified models (1D, 
single particle) are used to support daily machine 
operations [1]. Simple models have the advantage of 
being fast and able to describe the overall behaviour of 
the machine while detailed 3D models are slow and still 
cannot reproduce the details seen in the data [2]. We 
believe that a significant effort should be dedicated to 

developing more realistic 3D models before being able to 
use them to support real-time machine operations. Once 
such models are fully developed large scale parallel 
computing could be used for fast turn-around simulations 
and optimizations. 

ELEMENTS OF AN OPTIMIZATION 
PROBLEM 

The first important step is the proper definition of the 
optimization problem. An optimization problem has one 
or more objectives which are the important quantities or 
qualities characteristics of the problem that you would 
like to optimize.  These objectives depend on the 
parameters of the problem which are the variables 
affecting the outcome or the solution to the problem. It is 
usually a good practice to choose the parameters to which 
the solution is more sensitive. These parameters could be 
subject to constraints and or correlations which define the 
limits of the parameter space. The simplest case is where 
the parameters are independent with lower and upper 
bounds. If the parameters are correlated, it is usually 
recommended to reduce them into a set of independent 
parameters. The last and most important element of an 
optimization problem is the choice of the appropriate 
optimization algorithm. Depending on the nature of the 
problem, the most appropriate algorithm could be a local 
optimizer, a global one, a standard or an evolutionary. 

LOCAL VERSUS GLOBAL 
OPTIMIZATION ALGORITHMS 

It is usually not hard to find a local minimum of an 
objective function. What is hard is to prove that the 
minimum found is a good one and it is even harder to 
prove that a minimum is an absolute or a global one. A 
local optimizer usually starts with a first guess then finds 
a direction that minimizes the objective function and 
moves one step in that direction. The procedure is 
repeated iteratively until no more progress could be made. 
A local algorithm is usually fast because it explores the 
parameter space along a single path defined by the 
minimization direction adjusted at every step. In contrast, 
a global optimizer should explore the entire parameter 
space and eventually find all local minima before finding 
a global one. It should also prove that the minimum found 
is a global one which makes it much slower than a local 
optimizer. Luckily, not all problems or applications 
require global optimizations. A global optimizer is more 
appropriate to use in the design phase of an accelerator 
project to map the whole parameter space and make sure 
not to miss the best set of design parameters. Such a 
global optimizer should also find all feasible solutions to 
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help make compromises if needed. On the other hand, a 
local optimizer with a shorter path to solution is more 
adequate to support accelerator operations. In this case, 
we usually start from a good starting point to find the next 
best operating point by returning few elements on the 
accelerator. The time to solution is a very important 
parameter in the choice of the appropriate optimization 
algorithm. A good optimizer should also optimize the 
path to the best solution. 

STANDARD VERSUS EVOLUTIONARY 
OPTIMIZATION ALGORITHMS 

Standard optimization algorithms [3] are the most 
common and widely used. They usually have a single 
objective function to optimize which could be a weighted 
sum of multiple objectives. Derivatives of the objective 
function with respect to the optimization parameters are 
usually required. A single trial solution is evaluated at 
every iteration. Evolutionary algorithms are more recent 
[4] and are based on the “Theory of Evolution and 
Natural Selection”, where only the best survive. Multiple 
objective functions could be included in the optimization 
without the requirement of knowing their derivatives. 
Multiple trial solutions are evaluated at every iteration 
which gives the global nature of evolutionary algorithms. 

Examples of Standard Optimization Algorithms 
The first example of standard optimization algorithms 

is the simplex method [5], which does not require the 
function derivatives. It starts by building a simplex 
consisting of the first guess and a base of feasible 
solutions in the parameter space. Iteratively, the worst 
solution is replaced by a better one built from the base. 
The iterations stop when no more progress could be made 
or at a predefined cut-off error on the solution. The 
second example is the gradient descent method [6] which 
require the first derivatives of the objective function on 
the optimization parameters. The derivatives are used to 
determine the minimization direction pi at every iteration 
i:                      where f is the objective function and B is a 
symmetric non singular matrix. In the case where B is the 
matrix identity I the method is called the steepest descent 
method. The third example is the Newton method [7] 
which requires both the first and second derivatives of the 
objective function. In this case B is the matrix of second 
derivatives also known as the Hessian matrix H. The 
fourth example is the Quasi-Newton method [8] which 
uses the first derivatives but keeps updating the matrix of 
second derivatives at every iteration. In this case B is an 
approximation to the Hessian matrix and does not require 
extra computing effort for the second derivatives as for 
the Newton method. Each of these methods is actually a 
class of methods with a variety of implementations.  

Example of Evolutionary Algorithm:A Genetic 
Optimizer 

A genetic optimizer [9] starts with a set of solutions 
randomly generated inside the parameter space. The 

solutions are evaluated and ranked based on the 
objectives and constraints of the problem to select a 
subset of best solutions. The selected solutions are then 
used to generate the next population of solutions by 
crossover, mutation or other using predefined rates. The 
evaluation and ranking procedure is repeated for the new 
set of solutions until no progress could be made or a 
stable set of best solutions is obtained. For a given 
solution, the array of parameter values plays the role of a 
gene. Figure 1 shows the different ways of generating the 
next generation of solutions from the selected set of best 
solutions, namely crossover, mutation and random. The 
random generation of new solution could be turned on at 
the beginning for better sampling of the parameter space 
then turned off.   
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Figure 1: Three mechanisms to generate off-springs from 
selected best solutions. Crossover of two solutions on the 
left, mutation of a single solution in the middle and new 

random solution on the right. 

PARALLEL OPTIMIZATION 
ALGORITHMS 

 
Standard algorithms are serial in nature because the 

direction of the next iteration is decided based on the 
outcome of the current one. The fact that a single solution 
is evaluated per iteration makes these algorithms 
parallelizable only at the level of the objective function 
and derivatives evaluation. For example, a least square 
minimization where the objective function is of the form: 

 
 

 
could be parallelized by parallelizing the sum for large N. 
Optimizations using multi-particle tracking could be 
parallelized by parallelizing the tracking, the Poisson 
solver and the statistics calculations for large number of 
particles. A global optimizer may be parallelized by 
subdividing the parameter space and assigning the 
different sub-spaces to different processors. 

In contrast Evolutionary algorithms are parallel in 
nature because at every iteration multiple solutions are 
evaluated independently which makes them well suited 

iii fBp  1







N

i X

iX
f

1
2

2



FR1IOPK01 Proceedings of ICAP09, San Francisco, CA

Beam Dynamics, Other

246



for parallel processing with minimal communication. It is 
however not easy to parallelize the ranking, selection and 
offspring generation which are usually assigned to the 
master process. This makes evolutionary algorithms more 
suitable for optimization using multi-particle codes with 
realistic 3D external and space charge fields. Usually no 
parallel particle tracking is required unless a very large 
number of particles is needed for the optimization 
problem. In practice, any tracking code with space charge 
calculations could be used. A higher level parallel layer is 
often used to manage the generation, ranking and 
selection of trial solutions and every process calls the 
code when needed. In our beam dynamics code TRACK 
[10] this layer was built-in within the code. 

APPLICATIONS IN BEAM DYNAMICS 
OPTIMIZATION 

Automatic longitudinal tuning of a multiple 
charge state ion beam before a stripper 
In this application, a longitudinal fine-tuning procedure 
was developed specifically for a multiple charge state 
beam to minimize its longitudinal emittance right before a 
stripper [11]. The beam should reach the stripper in the 
form of an up-right ellipse in the (Δφ, ΔW) plane to 
minimize the emittance growth from the energy straggling 
effect in the stripper. This could be realized by matching 
the beam centroids and Twiss parameters of the different 
charge state beams. The objective function in this case is: 
 
 
 
 
where W0 is the desired beam energy and εW is the 
associated error.  εΔW, εΔφ and εα are the allowed errors on 
the relative energy, phase and α shifts of the individual 
charge state beams from the central beam.  The fit 
parameters in this case are the RF cavities phases and 
amplitudes in the section up-stream of the stripper. Figure 
2 shows the results of the fit for a five charge state 
uranium beam in the medium energy section of the RIA 
driver linac. This optimization reduced beam losses in the 
high-energy section of the linac by a significant factor as 
seen on figure 3. 
    

 

Figure 2: The left 4 plots show the phase and energy 
oscillations of the five charge states around the central 

charge state before and after applying the tuning 
procedure. The right 2 plots show the corresponding beam 

ellipses on the stripper before and after tuning. 

 

 

Figure 3: Beam loss in the RIA driver linac before and 
after applying the longitudinal tuning procedure. The two 
peaks correspond to the location of the strippers and the 

scatter loss is in the high energy section which has 
reduced significantly after fine tuning is applied. 

A realistic corrective steering algorithm 
We have recently developed a realistic corrective 

steering procedure [12]. A simplified algorithm is 
presented in figure 4. 

 

To have the beam centered on all monitors M=0
Solve the equation A*C + B = 0 for C

Consider an accelerator section with Nm monitors and Nc correctors

Apply the values of C to correct the beam

Determine the response function of monitors to correctors

M: array of monitors readings
C: array of correctors strengths
A: response function matrix
B: monitors readings for C=0

In the matrix form:            M = F(C) = A*C+B

 

Figure 4: Algorithm for the corrective steering procedure. 

 
In TRACK implementation, instead of solving the 

matrix equation A*C+B=0 for the array of corrector field 
strengths C, with A being the response function of 
monitors to correctors and B the monitors readings for 
C=0, we perform a least square minimization of the 
equivalent function given below: 

 
 
 

 
In this way, we can include the monitor precision σim and 
the maximum corrector field strength Cmax in the solution. 
Monitors with different precisions will have different 
weights in the minimization procedure. The minimization 
should lead to an approximate solution in the case of an 
over-determined problem (more equations than variables) 
and to the best solution in the case of multiple solutions 
(under-determined problem). This realistic corrective 
steering procedure could very well be applied in the 
design phase of an accelerator project to determine the 
monitors and correctors requirements for an effective 
beam center correction as well as in the control room of 
an operating accelerator. The results of its application 
during the design of the HINS project front-end linac [13] 
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being built at Fermilab are shown on figure 5. After 
multiple iterations, the optimum numbers and locations of 
correctors and monitors for an effective correction were 
determined. 
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Figure 5: Beam position and angle centers (left) and 
beam emittances and envelopes (right) before (red 

curves) and after (blue curves) applying the correction 
procedure for 100 randomly misaligned linacs. In green 
is the ideal case without misalignment and in black is 

the aperture. 

 

Design optimization of a chicane in an ultra-
low emittance electron injector 

We have recently implemented a parallel genetic 
optimizer into the beam dynamics code TRACK. As a 
first application we used it for the design optimization of 
the first chicane of an electron injector for an X-FEL-O 
linac [14]. The objective was to minimize the transverse 
emittance at the end of the chicane. The parameters were 
the quadrupoles and solenoids strengths as shown in 
figure 6. We were able to reduce the transverse emittance 
by about 10% from a manually optimized case which is 
very critical for an ultra-low emittance injector. 

 

 

Figure 6: Optimized beam in the first chicane of an 
electron injector for an X-FEL-O linac. 

 
To study the convergence of the genetic optimizer we 

compared the corresponding results to the results from a 
2D map in the case of two parameter optimization. Figure 
7 shows the results for both cases proving the 

convergence of the genetic optimizer in 5 iterations 
corresponding to a total of 500 trial solutions. Large scale 
optimizations are underway for a larger section of the 
linac. 

  

Figure 7: Comparing the result of a 2D map (left) with 
the result of the genetic optimizer (right) for a two 

parameter optimization problem. 

POTENTIAL APPLICATION: THE 
MODEL DRIVEN ACCELERATOR 

Concept and Motivations 
The concept of the model driven accelerator is to develop 
and use a computer model to support real-time accelerator 
operations. Presently, no accelerator in the world could 
fully rely on a computer model for its operations. The 
main reason is a discontinuity between the design and 
operation phases of an accelerator project. Among the  
factors contributing to this discontinuity are: 1- 
Simulations in the design phase assume almost perfect 
conditions and cannot reproduce the real machine, 2- 
Actual elements specification and performance are 
usually different from their original design and in most 
cases 3- Not enough diagnostic devices to characterize the 
machine. The lack of a realistic model to support the 
commissioning and operations results in significant delay 
in the deployment of a new machine and a lot of time 
spent on machine tuning during operations. This usually 
leads to low availability and high operating cost of the 
machine. For example, a complex system such as the 
proposed FRIB facility [15], where primary beams from 
proton to uranium up to 600 MeV/u are used to produce 
beams of rare isotopes all over the map, cannot afford not 
to have a computer model to support its operations. 

To bridge the gap between the design and operation 
phases we propose to develop a realistic model of the 
machine. Among the benefits of such a model is fast 
tuning for the desired beam conditions and fast retuning 
to restore the beam after a failure. This should 
significantly improve the availability of the machine and 
reduce its operating cost. 

Requirements for the realization of the Model 
Driven Accelerator 
The main requirements for the realization of the model 
driven accelerator could be summarized in the 
development of a 3D beam dynamics code with the 
appropriate set of optimization tools and large scale 
computing capabilities. A multi-particle beam dynamics 
code is more realistic than matrix-based and single-
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particle codes because it supports 3D fields, includes 
fringe fields and appropriate space charge calculations. It 
also allows more detailed simulations necessary to study 
eventual beam loss and produce data similar to the 
measured data. Such a code should also include a large set 
of optimization tools. Optimization tools are needed not 
only for design optimization but also to tailor the 
computer model to the actual machine to be useful for 
real-time operations. Multi-particle optimizations usually 
involve tracking a large number of particles for large 
number of iterations which is very time consuming and 
requires large scale parallel computing. Therefore the 
beam dynamics code should have parallel computing 
capabilities. 

A small scale realization of the Model Driven 
Accelerator 
We have recently succeeded to extract, accelerate, 
analyze and recombine a two-charge state DC bismuth 
beam from an ECR ion source [16]. The beam is perfectly 
combined at the point of injection into a subsequent RF 
accelerator. We consider this as a small scale realization 
of the concept of the model driven accelerator. The beam 
dynamics code TRACK was used first to design the beam 
line and then to support the operation by predicting the 
elements settings required to recombine the two charge 
state beam at the end of the LEBT. Figure 8 is a general 
3D view of the prototype 2Q-LEBT beam line.  

 

 

Figure 8: General 3D view of the 2Q-LEBT 

 
For a realistic beam dynamics simulation, 17 beams (O 

and Bi) are tracked simultaneously from the ion source 
through the LEBT with a total current at the source of 
about 2 mA. We assumed a 4D water-bag initial 
distribution for all beams and a 50 % charge 
compensation factor in non-electric devices and 0% in 
electric devices. Realistic 3D models were developed and 
used for all beam line elements. In order to tailor the 
TRACK model to the actual beam line we had first to 
determine the initial beam parameters at the source. To do 
so we had to develop a new procedure to fit the beam 
profiles measured at the middle plane by varying the 

beam parameters at the source. Figure 9 shows the result 
of the fit for a two-charge state 75-kV bismuth beam 
(20+, 21+). The transverse emittances and Twiss 
parameters obtained by fit show that despite the axial 
symmetry of the extraction region, the beam is not axial 
symmetric which could be explained by a non symmetric 
plasma boundary inside the ion source. 
 

 

Figure 9: Horizontal (left) and vertical (right) beam 
profiles. The curves are the measured profiles and the 

histograms are the result of the TRACK fit. 

 
Once the initial beam conditions are known, we used the 
computer model to find the element settings for the 
desired operation mode. A new fit procedure was 
developed to produce symmetric beam dynamics between 
the two bending magnets as this is a necessary condition 
to recombine the multiple charge state beams. Another fit 
was also used to find the setting of the last triplet for a 
perfect combination at the end of the LEBT where a beam 
profile monitor and a Pepper-Pot emittance meter are 
installed. Figure 10 shows the measured beam profiles 
and figure 11 shows the Pepper-Pot images at the end of 
the LEBT. A comparison of the element settings predicted 
by TRACK and the actual setting to combine the two 
beam shows maximum deviation of ~ 10 % which could 
be improved by checking the assumptions made in the 
simulations. We notice that the two charge state beams 
are almost perfectly combined. 

 

Figure 10: Measured beam profiles at the end of the 
LEBT for the individual Bi 20+ and 21+ beams and the 

combined beam. 

 

20+

21+

20+&21+

20+

21+

20+&21+

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-6 -4 -2 0 2 4 6
X (cm)

a.
u.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-3 -2 -1 0 1 2 3
Y (cm)

a.
u.

0

200

400

600

800

1000

1200

1400

1600

1800

-4 -3 -2 -1 0 1 2 3
X (cm)

a.
u

0

200

400

600

800

1000

1200

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Y (cm)

a.
u.

Proceedings of ICAP09, San Francisco, CA FR1IOPK01

Beam Dynamics, Other

249



 

Figure 11: Pepper-Pot images of the combined beam 
(left) and the individual beams (right). Bi 20+ is in blue 

and 21+ is in red. 

 

Further developments towards the Model 
Driven Accelerator 

To be able to use a realistic 3D model online for real-
time machine operations, we should be able to perform 
large scale optimizations on large number of processors 
(32768 processors or more). More optimization tools need 
to be developed for the commissioning phase to tailor the 
computer model to the actual machine by fitting the 
measured data. For this purpose, interfaces between the 
beam diagnostic devices and the computer model are 
needed to calibrate and analyze the data to input to the 
code. Numerical experiments could be used to test and 
fine tune the tools before implementation to the real 
machine by producing detector-like data. Only after all 
these developments, that a realization of the model driven 
accelerator will be possible. As a full scale application, 
we are proposing to apply this concept to the 
superconducting linac ATLAS at Argonne and to other 
existing machines. 

SUMMARY 
Optimization tools and methods are needed in every 

phase of an accelerator project, namely the design, 
commissioning and operations. No single algorithm could 
satisfy all these optimization needs. Different algorithms 
are being used in accelerator physics: local, global, 
standard and evolutionary. We have briefly reviewed and 
compared different classes of optimization algorithms and 
presented few applications in beam dynamics 
optimization. The ultimate goal of realizing the concept of 
the “Model Driven Accelerator” will require the 
development of a realistic 3D beam dynamics code with 
the appropriate set of optimization tools and large scale 
parallel computing capabilities. For new machines, we 
should take advantage of the commissioning phase to 
bridge the gap between the original design and the actual 
machine by tailoring the computer model to the machine. 
Obviously, a significant development effort is still needed 
for a full scale realization of the concept of the “Model 
Driven Accelerator”.   
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