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Abstract

The mesh calculation based on the paraxial approxima-
tion can be much faster than ordinary methods when the
bunch is very short. There are two reasons. One is to
be able to choose the longitudinal mesh size independent
of the bunch length. The other is that the problem can be
solved as an initial-value problem in spite of frequency do-
main calculation.

However, the accuracy of the results by the approxima-
tion is not clear generally. It will be shown that the approx-
imation is valid for rectangular tapered chamber in some
frequency range.

INTRODUCTION

Recently, the calculation of wake field and the
impedance has become more important because new ac-
celerators require high current and much required fineness.
In many cases they are usually calculated numerically by
simulation using a mesh.

There are many methods of mesh calculation. The finite-
difference time domain (FDTD) [1] and the finite integra-
tion technique (FIT) [2] are popular.

The mesh computation based on the paraxial approxi-
mation [3] can be much faster than ordinary methods if
the bunch length is very short. The approximation has
used in geometrical optics. Since several years ago, it has
also used for beam field. The calculation of Coherent Syn-
chrotron Radiation (CSR) by paraxial approximation give
good results[4][5]. In Ref.[3], the analytical solution of ge-
ometric wake impedances by paraxial approximation are
shown. They are that for axisymmetric geometry.

In these proceedings, numerical 3D calculation will be
shown. The vertical impedance for rectangular tapered
chamber is computed. It agrees with the analytic solution
in the appropriate frequency.

The smaller angle taper should be better because the
wave at small angle is dominant.

We will focus only on short range wake and completely
conducting wall in this proceeding. Resistive wall is not
considered. MKSA unit is used in these proceedings.
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IMPEDANCE

In these proceedings, special transformed fields for arbi-
trary function f̃(x, y, z, t) are defined by

f̃(x, y, z, t) =
1

2π

∫
f̀(x, y, z, k)e−ik(ct−z)dk. (1)

Tilde means original value and ‘grave’ (f̀ ) means the trans-
formed value satisfying the equation above. This is like
Fourier transform. However, the factor eikz has to be no-
ticed.

The wake effect is able to be represented by impedance.
Conventional vertical impedance is

Zy =
−i

cqys

∫ ∞

−∞
dz

[
Èy + cB̀x

]
rw=rs=(0,ys)

, (2)

where q is a charge, rs = (xs, ys) is an offset of source
particle, rw = (xw , yw) is an offset of witness particle,
ys is small, and Èy, B̀x are the special transformed fields
defined by Eq.(1). We will omit grave (f̀ → f ) from now
on.

PARAXIAL APPROXIMATION

In this study, paraxial approximation is used. iIt is valid
if the wave propagates at small angle θ from z axis, as
shown in Figure 1.

Figure 1: ‘Paraxial’ means the wave angle θ is small.

We will consider cτ � g, where τ = (zs − zw)/c and
g is the transverse minimum distance from beam axis. For
rectangular chamber whose hight is smaller than width, g is
the smallest half hight. In this range, backward or large an-
gle propagating waves cannot take effect. Therefore, θ � 1
can be assumed. Suppose cτ(� g) is bunch length, the
waves of θ ≥ 1 which generated by a bunch don’t catch
up with the same bunch. When considering wake effect for
bunch itself, paraxial approximation is valid for very short
bunch length.
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We divide electromagnetic fields into 2 terms as

E = E(b) + E, (3)

B = B(b) +B, (4)

where E, B is net electric, magnetic field, and E(b), B(b)

is vacuum fields, which is the solution of no wall. E,B
defined by above equation is the radiated fields.

The vacuum fields are found by solving Maxwell equa-
tion with charge density

ρ̃(r, z, t) = qδ(t− z/c)δ(r − rs). (5)

Therefore

Ẽ(b)(r, z, t) =
qδ(t− z/c)

2πε0|r − rs|2 (r − rs). (6)

B̃(b) =
1

c
ez × Ẽ(b) (7)

From Eq(1),

E(b)(r, z, k) =
cq

2πε0|r − rs|2 (r − rs) (8)

B(b) =
1

c
ez ×E(b) (9)

Accordingly, Maxwell equation with respect to E is

(∇2
⊥ + 2ik∂z + ∂2

z )E = 0. (10)

The source term is cancelled.
We will show 3rd term of Eq.(10) is negligible. In time

domain, Ẽ is superposition of the plain wave

Ẽη,k(x, y, z, t) = Ê(η, k)e−ik(ct−ηxx−ηyy−ηzz), (11)

where ‖η‖ = 1, Ê is a function of (η, k). η can be repre-
sented by

η = ex sin θ cosφ+ ey sin θ sinφ+ ez cos θ. (12)

θ is the angle of wave propagating from z axis. Neglecting
the order of θ,

η ≈ exθ cosφ+ eyθ sinφ+ ez(1− θ2/2). (13)

Therefore,

Ẽη,k(x, y, z, t)

= Êe−ik(−xθ cosφ−yθ sinφ+zθ2/2)e−ik(ct−z). (14)

E is the superposition of

Eη(x, y, z, k) = Êeik(xθ cosφ+yθ sinφ−zθ2/2). (15)

If θ3 is not omitted but O() is used,

Eη(x, y, z, k)

= Êeik[(θ+O(θ3))(cosφx+sinφy)−(θ2/2+O(θ4))z].(16)

Substituting it for E in Eq.(10), it is found that the first and
second term are order of k2θ2 and the third term is order
of k2θ4. Accordingly, it is negligible. Eq.(10) is approxi-
mately the following equation,

[∇2
⊥ + 2ik∂z

]E = 0. (17)

This is parabolic equation.
The parabolic equation and boundary conditions give

transverse electric fields. From them, we obtain the other
fields as

B⊥ ≈ 1

c
ez × E⊥, (18)

Ez =
ci

k
ez · (∇⊥ ×B⊥), (19)

Bz = − i

ck
∇⊥ × E⊥. (20)

The impedances are calculated from these fields.
Paraxial approximation has two advantages. One is to be

able to choose the transverse mesh size independent of the
bunch length. The other is a problem can be solved as an
initial-value problem in spite of frequency domain calcula-
tion. The reason is Eq.(10) is the first order with respect to
z. Common frequency domain calculations are eigenvalue
problem. Therefore, it must be faster than FDTD.

TAPERED RECTANGULAR CHAMBER

It is important to calculate the impedances of collima-
tors because they are designed depending on the wake field.
When the tapered angle of a collimator is small, bunch
length is short, and the collimator is not axisymmetric,
this impedance is hard to calculate by ordinary method.
However, it can be fast calculated by paraxial approxima-
tion. Both small tapered angle and short bunch are good
for paraxial approximation. When the tapered angle of a
collimator is small, the wave at small angle is dominant.
For short bunch length, only small τ is need if the wake
in the same bunch is considered. Therefore, we computed
the impedance for collimator which is not axisymmetric by
paraxial approximation. As an example of the collimator,
tapered rectangular structure was choiced.

Geometry

The half height b(z) depends on z. The half width w is
10mm. Figure 2 is up side view of the calculated geometry
from −x direction.

Figure 2: Side view of the upper half of the collimator. The
maximum of b(z) is 5 mm, and the minimum g is 3 mm.
L = 200 mm.
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Mesh

Figure 3 shows how to mesh about vertical and longitu-
dinal direction. Mesh sizes Δx, Δη, Δζ is constant. Here
η = y/b(z), ζ = z/k.

Figure 3: How to mesh.

Analytic Formula

Stupakov derived analytic formula,

Zy(k → 0) = − iwZ0

4

∫
dz

(b′)2

b3
(21)

in Ref [6]. it is assumed b � g � L, and

k � b

αw2
, (22)

where α is the tapered angle.

Result

Figures 4 and 5 show comparisons of the simulation with
the analytical value. In Fig. 4, the horizontal axis repre-
sents frequency f and the vertical axis represents real part
of vertical impedance. Two kinds of data with different
longitudinal mesh size are plotted. Blue diamonds show
Δζ = 10−9m2. Green triangles show Δζ = 10−8m2. Or-
ange line shows analytic solution. It is applicable while f is
much smaller than 190 GHz because of condition (22). On
the other hand, paraxial approximation requires that f is
much greater than 16 GHz because cτ � g is correspond-
ing to f 	 c/(2πg) ≈ 16 GHz. Therefore, the simulation
agrees with the analytic solution while 16 GHz � f �
190 GHz although it fluctuates very much.

The imaginary impedance is shown in Fig. 5. Red squares
show Δζ=10−9m2. Purple ×’s show Δζ=10−8m2. Yel-
low line shows analytic solution. As is mentioned, it is
valid while f is much smaller than 190 GHz. On the other
hand, paraxial approximation requires f 	 16 GHz. As
you can see, the simulation agrees with the analytic solu-
tion while f is applicable range.

CONCLUSIONS AND DISCUSSIONS

In summary, for rectangular tapered chamber, the ver-
tical impedance by the simulation agrees with the ana-
lytic solution in the appropriate frequency. Accordingly,
the simulation is effective when bunch length σz is much
smaller than g.

Figure 4: Real part of the impedance for rectangular taper.

Figure 5: Imaginary part of the impedance for rectangular
taper.

There are at least three future tasks. First is to improve
the code. Second is to compare calculated impedances with
that of other simulation codes, then to know how accu-
rate and how fast the code is. Third is to calculate the
impedance of ILC collimator. It is hard to calculate.
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