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ABSTRACT 

 
Beam dynamic simulations with kinetic model have 

been conducted. We have successfully parallelized a 
PIC solver, TRACK, and developed new Vlasov 
solvers. For the PIC solver, particles are distributed 
evenly on different processors and space charge effect 
has been counted by solving Poisson’s equation on a 
finite mesh. Several Poisson solvers have been 
developed using Fourier method in Cartesian coordinate 
system, Fourier Spectral Element in Cylindrical 
coordinate system, Wavelet method, Spectral Element 
Method (SEM) on structured and unstructured grids. 
Domain decomposition (DD) has been used to 
parallelize these solvers. Different Poisson solvers have 
been developed for simulating space charge dominated 
beams. These solvers have been incorporated into 
PTRACK and Vlasov solvers. PTRACK has now 
widely been used for large scale beam dynamics 
simulations in linear accelerators. For the Vlasov solver, 
Semi-Lagrangian method and time splitting scheme 
have been employed to solve Vlasov equation directly 
in 1P1V and 2P2V phase spaces. Similarly, DD has 
been used for parallelization of Vlasov solvers.  

 

INTRODUCTION 
Plasma and charged particle simulations have great 

importance in science. There are three different 
approaches to simulate plasmas: the microscopic model, 
the kinetic model and the fluid model. In the 
microscopic model, each charged particle is described 

by 6 variables (x, y, z, zyx vvv ,, ). Therefore, for N 

particles, there are 6N variables in total. This requires 
solving the Vlasov equation in 6N dimensions, which 
exceeds the capability of current supercomputers for 
large N. On the other end is the fluid model which is the 
simplest because it treats the plasma as a conducting 
fluid with electromagnetic forces exerted on it. This 
leads to solving the Magneto-hydrodynamics (MHD) 
equations in 3D (x, y and z). MHD solves for the 
average quantities, such as density and charge, which 
makes it difficult to describe the fine structure in the 
plasma. Between these two models is the kinetic model, 
which solves for the charge density function by solving 
the Boltzmann or Vlasov equations in 6 dimensions (x, 

y, z, zyx vvv ,, ). The Vlasov equation describes the 

evolution of a system of particles under the effects of 
self-consistent electromagnetic fields. This paper deals 
with the kinetic model.  

There are two different ways to solve the kinetic 
model. The most popular one is to represent the beam 
bunch by macro particles and push the macro particles 
along the characteristics of the Vlasov equation. This is 
the so called Particle-In-Cell (PIC) method, which 
utilizes the motion of the particles along the 
characteristics of the Vlasov equation using a Lagrange-
Euler approach [1, 2]. The PIC method has the 
advantages of speed and easy implementation, but 
similar to MHD, it is hard to calculate fine structures in 
the plasma. Furthermore, there is noise associated with 
the finite number of particles in the simulation. This 
noise decreases very slowly, as N/1 , when the number 
of particles N is increased. The other way to solve the 
kinetic model is to solve the Vlasov equation directly. 
This can overcome the shortcomings of the PIC method. 
We have applied SEM which can achieve high order 
accuracy and developed scalable Poisson and Vlasov 
solvers. This paper reports our work using both models. 
In order to describe space charge effects, several 
Poisson solvers have been developed.  

 

BEAM DYNAMIC SIMULATION  
WITH PIC SOLVER 

In the last several years, we have parallelized a PIC 
solver, TRACK, which has been developed in physics 
division at ANL. Parallel algorithm and detailed 
benchmark results can be in [2, 3, 4]. Recently 
PTRACK has been used for an one-to-one RFQ 
simulation of FNAL proton driver. Totally 865M 
charged particles have been simulated from 50 keV to 
2.5 MeV in 325 MHz radio frequency quadrupole of a 
proton driver at FNAL. Figure 1 is the comparison in 
( WW /,  ) plane. This result provides much more 

accurate information and useful to the design 
optimizations. Now PTRACK has been used as 
workhorse for large scale optimizations. 

PARALLEL POISSON SOLVERS 

Fourier Method 
 
 

 
 
This is the most standard method for solving the 

Poisson’s equation in Cartesian coordinate system. The 
potential has been expanded in Fourier series in all three 
directions. Periodic and Dirichlet zero boundary 
conditions have been applied in all three directions. 
Three different domain decomposition methods have 
been implemented as shown in Fig.2. Using model C, it 
is easy to use tens of thousands of processors with 
relatively small grid for space charge calculation. Since 
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relatively small grid can be used for space charge 
calculation, good scaling has been obtained and can be 
found in [3, 4]. 

  

Fourier Spectral Element Method 

   This solver is developed for cylinder coordinate 
system. The potential is expanded in Fourier series in 
the axial and circumferential directions, while it uses 
spectral element expansion in the radial direction. 

 
 
 
 
 
 
 
 
 
 
 
Domain decomposition in the radial and 

circumferential directions has been implemented as 
shown in the right of Fig. 1. Periodic B.C. has been 
applied in the axial and circumferential directions and 
zero Dirichlet B.C. have been applied in the cylinder 
wall. Detailed method and benchmark results can be 
found in [2]. 

 

Wavelet Method 
Recently, multi-resolution analysis (MRA) emerges 

as a powerful tool to analyses multi-scale phenomena. 
We have developed a Poisson solver using wavelet 
expansions.  A MRA of           consists of a chain of 
closed subspaces 

 
 
 
 
Since                    , we can define                   and  
                 , such that                              , where 
 
 
 
Then 
 
 
 
There is an efficient preconditioning matrix for the 

linear system generated by the wavelet expansion. We 
use following analytical solution to test this wavelet 
Poisson solver.  

 
 
 
 
 
 
 
 
 
The computation domain is 3]3,[  , and zero 

Dirichlet B.C. has been used. The history of the 
converging error is shown in the left of Fig. 3, the dash 
line corresponding to no preconditioning, and the solid 
line corresponding to with preconditioning. Using 
preconditioning the speed is about three times faster as 

before. Using wavelet, there are only few percent of 
total coefficients are larger than some critical value, as 
shown on the middle of Fig. 3. 
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Fig. 2:  Three parallel models (A, B and C) for solving Poisson’s equation using Fourier method 

 
Fig. 1: Phase contour comparison in ( WW /,  ) plane and parallel model in cylinder coordinate system 
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Domain decomposition has also been used for 

parallelization, and relatively good scaling has been 
achieved. It has also been incorporated into PTRACK 
code, nearly the same results have been obtained. 

 

Spectral Element Method on Structured Grid 

The Spectral Element Method (SEM) originated in 
the 1980’s [6, 7, 8], and has been applied in many 
different areas. In our Vlasov solvers, a parallel Poisson 
solver based on Spectral Element Method (SEM) on 
structured grid has been constructed.  2D structured grid 
has been shown on the right of Fig. 3. 2D bases have 
been shown on the left of the Fig. 4. Similarly, domain 
decomposition has been used for parallelization with 
Dirichlet boundary conditions. Continuous Galerkin 
(CG) method has been used and zero Dirichlet B.C. has 
been imposed. Due to the memory limitation, only the 
iterative solver can be used for solving boundary modes 
of the 2D Poisson’s equation when the mesh is large. 
Interior modes in each element have been solved 
directly according to the Shur complement. The discrete 
system of Poisson’s equation can be written as: (b and i 
correspond to boundary and interior variables) 
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Figure 4 (middle) and (right) show the charge and 

potential distributions. Since zero Dirichlet B.C. has 
been used, the potential is nonzero close to the 
boundary. This means the domain size need large 
enough to obtain the right potential distribution. 

 

Spectral Element Method on Unstructured 
Grid 

In order to solve Poisson in complex geometries, a 
parallel Poisson solver using SEM on an unstructured 
grid has been developed recently. Since finite element 
method (FEM) can handle complex geometry easily, 
and spectral method can achieve high order accuracy. 
Combine these two, SEM can handle the complex 
geometry and also achieve high order accuracy at the 
same time. 

The potential can be expressed as 
 
 
 

The continuous Galerkin formula for solving the 
Poisson’s equation is 
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A mesh partition for 4 processors has been shown on 
the left of Fig. 5. Middle and right plots in Fig. 5 show 
the charge and potential distributions on a circular 
domain. 
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Fig. 3: Convergence history with/out preconditioning (left), wavelet coefficients (middle)  

and 2D structured grid (right) 
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Fig. 4:  Modal bases (left) on 2D structured grid, charge (middle) and potential (right) distributions 
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DYNAMIC SIMULATION WITH  
VLASOV SOLVERS 

 
In order to overcome the shortcoming of the PIC 

solvers, we have developed direct Vlasov solvers. The 
distribution function ),,( tvxf


 in phase space is 

governed by the Vlasov equation. 

Vlasov equation in 1P1V phase space 

In 1P1V phase space, the non-dimensional Vlasov 
equation can be written as following: 
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Vlasov equation in 2P2V phase space 
In beam dynamics, a simplified model can be 

deduced in 2P2V form as a paraxial model based on the 
following assumptions: 

• The beam is in a steady-state: All partial 
derivatives with respect to time vanish; 

• The beam is sufficiently long so that the 
longitudinal self-consistent forces can be neglected; 

• The beam is propagating at a constant velocity bv  

along the propagation axis z; 
• Electromagnetic self-forces are included; 
•  , and ~ ),,,( byxbzzyx ppppppppp 


  where bb mvp  is the beam momentum. It follows in 

particular that 
2/122 )1(  ,)/(  bbbb cv   

• The beam is narrow: the transverse dimensions of 
the beam are small compared to the characteristic 

longitudinal dimension. The paraxial model can be 
written as: 
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,where s  is the self-consistent electric potential due 
to charges. eE


 and eB


 are external electric and 

magnetic fields. 
bv  is the reference beam velocity. 

Numerical Algorithm 
The Semi-Lagrangian Method (SLM) [9] has been 

used for time integration. A plot explains the idea has 
been shown on the left of Fig. 7. The time splitting 
scheme has been used for time integration as proposed 
by Cheng and Knorr [10].   
. . . . . . 
   Do istep=1,nstep: 

   - Compute   dvtvxftx ),,(),(  ; 

- Compute tjEE nnpred   from Ampere’s law; 

- Do until  predN EE 1  

      · Substep1: 2/)( 112/1 txEvv nprednn    

       · Substep2: tvxx nnn   2/11 ; 

       · Substep3: 2/)(2/1 txEvv nnnn   ; 

       · Interpolate to compute charge density; 

       · Solve Poisson’s equation for 1nE ; 

       · Update new 1 npred EE . 

  - Enddo 

  Enddo 

. . . . . . 
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Fig. 5:  Modal bases (left) on 2D structured grid, charge (middle) and potential (right) distributions 
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The algorithm for 2P2V simulation is similar to the 
above, but with advancing the first and the last substeps 
in physical space and the second substep in the velocity 
space.  

 
Table 1. Scaling 2D Poisson solver (E=64, P=4) 

 
CPU 16 64 256 1024 4096 
Time (s) 286 68 17.2 4.08 1.66 
PE 1.0 1.0 1.0 1.0 0.673 

 

Benchmarks and Simulation Results 
The code comprises two major parts: interpolation 

and space charge (SC) calculation. The SLM performs 
back tracking and interpolation respectively in the 
physical and velocity spaces. Each processor has only 
part of the global mesh for the space charge 
calculations. The field mesh and space charge mesh are 
different. This scheme has the advantage of easy 
implementation and no communication for particle 
tracking is required. However, this method requires 
large memory in each processor and intense 
communication for the parallel Poisson solver. Figure 6 
(left) shows the domain decomposition in 4D for 2P2V 
simulations. 

Table 1 shows the benchmark results for the 2D 
Poisson solver. Good scaling has been achieved. Figure 
6 (middle) compares the interpolation errors with cubic 
spline, Jacobi polynomial with P=2 and 4. Clearly using 
a Jacobi polynomial gives much better results, which is 
good to use in the Semi-Lagrangian scheme. The right 
plot in Fig. 6 shows the strong scaling results for both 
the Poisson and Vlasov solvers in 2P2V simulations. It 

shows that the Vlasov solver can have good scaling 
because the most time consuming part is the 
interpolation. And since the interpolations are local on 
each processor, there is no communication between 
different processors. So even when the scaling of the 
Poisson solver becomes worse with 4k processors, the 
overall scaling is still good. 

The middle and right figures in the Fig. 7 show the 
time history of log(Ex) for linear and strong Landau 
damping. The initial particle distribution function and 
the related parameters are shown in following: 

 
 
 
 
 
 
 
 
For the linear Landau damping, alpha=0.01, and for 

the strong Landau damping, alpha is 0.5. Clearly they 
represent different dynamics. The decreasing and 
increasing rate can be measured and are consistent with 
theoretical predictions and other researchers. 

  

2P2V Simulations 
In 2P2V simulations, a proton beam has been 

simulated through alternating hard edge electric 
quadruple channel. The initial emittance is 

 200 mm mrad, and the energy is W=0.2 MeV. The 
current of the beam is 0.1 A, and the reference velocity 
is 61019.6 bv m/s. The  transverse physical space is [-

0.12, 0.12] by [-0.12, 0.12], and the velocity space is 
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Fig. 6: 4D domain decomposition (left), Interpolation errors vs. element number (middle)  

and strong scaling in 2P2V simulation (right) 

          
Fig. 7: Semi-Lagrange Scheme (left), Linear Landau Damping (middle), Strong Landau Damping (right) 
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]108,108[ 55   by ]108,108[ 55   m/s. The 

alternating electric quadruple field is defined as 
))(- ,)((),,( 00 yzkxzkzyxEe 


 and shown in Fig. 8. 

Since the initial beam distribution is Gaussian (not a 
KV distribution), the RMS envelope is not periodic with 
the amplitude fluctuating from one period to the next. 
Figure 9 shows the beam contours in (x, y), (x, x’), (y, 
y’) and (x’, y’) phase planes at z=0 and 192 steps. 
Detailed information on 1P1V and 2P2V Vlasov 
simulations can be found in [2]. 

 
SUMMARY 

 
This paper presents our researches on beam dynamic 

simulations with PIC method, different parallel Poisson 
solvers, and beam dynamic simulations with direct 
Vlasov solvers. Domain decomposition has been 
adopted for parallelization of TRACK code, and several 
parallel Poisson solvers have been developed and 
incorporated into PTRACK. PTRACK has now been 
used for large scale beam dynamic optimization and 
simulations. Several numerical techniques have been 
used to solve Poisson’ equation in different conditions, 
such as using Cartesian and Cylindrical coordinate 
systems, using structure and unstructured grids, etc.  
Direct Vlasov solvers have been developed with a 
high-order SEM. The advantages and effectiveness of 
the SEM have been demonstrated. The Vlasov solvers 
have adopted the Semi-Lagrangian method. Similarly 
domain decomposition has been used for parallelization 
of these solvers. Scalable Poisson solvers have been 
developed within. Benchmarks of the parallel models 
have shown good scaling on BlueGene/P at ANL with 
up to 4k processors. The SEM shows its advantages in 
these direct Vlasov solvers, such as local interpolation, 
easy parallelization and long time integration. These 
explorations are encouraging, and more investigation 
will be done.  
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Fig. 9:  From top to bottom are contours in the (x, y), 
(x, x’), (y, y’) and (x’, y’) planes, from left to right 

correspond to z=0 and 192 time steps. 

 
Fig. 8: Alternating electric focusing force 
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