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Abstract

The production of electron beams suitable for the suc-
cessful operation of the European XFEL is studied at
the Photo-Injector Test Facility at DESY, Zeuthen site
(PITZ). The PITZ beamline is equipped with three dedi-
cated stations for transverse emittance measurements and
in the forthcoming shutdown period a section for transverse
phase-space tomography diagnostics will be installed. The
module contains four observation screens and therefore
only four projections can be used in order to reconstruct
an underlying phase-space density distribution.
This work presents the performance of a number of re-

construction algorithms on limited projection sets using nu-
merical data applied to the PITZ operating conditions. Dif-
ferent concepts for comparison between an original phan-
tom and the reconstructed distribution are presented.

INTRODUCTION

The PITZ facility is dedicated to the development and
optimization of electron sources subsequently to be used
in FELs like the FLASH and the future European XFEL.
Such goals require detailed knowledge of the electron
beam properties according to which the PITZ beamline is
equipped with extensive diagnostics components. A key el-
ement for the performance of a FEL is the small transverse
emittance, wherefrom the transverse phase space is a cen-
tral point in the electron source characterization at PITZ.
Currently, the transverse phase space is being reconstructed
using single slit scan technique [1] and a new module for
transverse phase space tomography diagnostics will be in-
stalled in the forthcoming 2009-upgrade.
The module consists of four screen stations as each two

surround a FODO cell. Correspondingly, four projections
are to be used for tomographic reconstruction. The design
has been discussed in [2] and expectations towards its per-
formance with nominal beam parameters of 1 nC bunch
charge, 32 MeV/c momentum and normalized transverse
emittance of 1 mm mrad can be found in [3]. The setup
will also be used in a combinationwith a transverse deflect-
ing cavity structure to study the longitudinal phase space
of individual pulses within the bunch train. In any case the
choice of proper reconstruction algorithm is of great im-
portance.
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This work focuses on the performance of a few recon-
struction algorithms with respect to their applicability to
limited input projection data. The methods discussed are
Filtered Backprojection (FBP), Constrainted Additive Al-
gebraic Reconstruction Technique (caART) and Maximum
Entropy (MENT). Several approaches to quantify the qual-
ity of the reconstruction conclude the contribution.

TRANSVERSE PHASE-SPACE
TOMOGRAPHY OF AN ELECTRON

BEAM

Tomography deals with the reconstruction of an n-
dimensional object knowing an infinite number of its
(n − 1)-dimensional projections calculated at different
view angles in [0, π]. A great number of scientific and
practical areas are using the tomography ideas - medical
imaging is interested in innocuous cross sectioning of the
human body, archaeology needs non-destructive material
inspection.
The object of interest in the transverse beam dynam-

ics is an underlying density distribution ρ (x, x′, y, y′) at
a given position along the beamline. The density distri-
bution cannot be obtained instantly but its spatial compo-
nents are directly measurable by means of screens, wire
scanners, etc. Meeting an observation screen, for instance,
the four-dimensional phase space is projected onto a spatial
distribution (x, y). A number of projections of the spatial
distribution, taken at different angles, are needed for the re-
construction and, therefore, one needs to vary the orienta-
tion of the phase space on the screen. The last is equivalent
to rotation of the beam in the phase space and is achievable
by altering the focusing conditions using magnets. Let the
system be linear such that M denotes a valid 2 × 2 trans-
formation matrix from the position of reconstruction zi to
the position of observation zf and p (xf ) is a projection
onto the horizontal axis at zf . The condition on the linear-
ity should be interpreted so that the matrices M describe
well the transport between the two longitudinal positions.
The projection can be written as a function of the initial
phase-space coordinates as the Radon transform

p(xf ) =
∫∫

ρ (xi, x
′
i) δ (xf − M11xi − M12x

′
i) dxidx′

i.

(1)
The problem to be solved is, having a number of p (xf )
with different matrices M , to find a unique inversion of
the Radon transform. Disregarding any intrinsic measure-
ment errors, the singularity of the solution depends on the
number of projections, the equidistant steps between each
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two of them and the linearity of the system. While the lat-
ter might be hard to cope with and the first two strongly
depend on the hardware setup, the overall result can be op-
timized applying a suitable reconstruction algorithm.

RECONSTRUCTION ALGORITHMS

Backprojection (BP) and its derivative Filtered Backpro-
jection (FBP) [4] attain fast computations and are simple to
implement making them two of the most commonly used
reconstruction methods. BP employs direct inversion of
the Radon transform (1) as it iteratively smears each pro-
jection onto the position of reconstruction according to the
fact that the density at a point can be defined as integration
over the line integrals from different projections passing
through this point or

ρ (x, x′) =
∫ π

0

pθ (xθ) dθ (2)

for θ determining the transformation. Defined in this way,
the inversion of the Radon transform is influenced by blur-
ring effects due to the fact that each point might be added
more than once since it might contribute not to a single line
integral in the space (x, y). The FBP uses an additional low
pass filter which introduces negative values in each projec-
tion. The latter ones are needed in order to correct for pro-
jections from other angles. The filter is applied in advance
to the iterative smearing.
When applied to limited data sets the performance of BP

and FBP is unsatisfactory. This is shown in Fig. 1, where
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Figure 1: Comparison between original distribution and its
reconstructed ones using FBP with different number of in-
put projections. The ridges on the reconstructed distribu-
tion decrease with the number of angular steps.

an original phantom distribution is given beside the recon-
struction result of FBP having four projections, obtained
with equidistant rotations over π - Fig. 1(b). Fig. 1(c)
shows that the quality of the reconstruction in terms of
streaking artifacts improves with the increase of the num-
ber of projections. For that particular example each projec-
tion is convolutedwith a Butterworth low-pass filter [4] pri-
ori the integration. Filtering out low intensity values would
not be sufficient since the uniform spot on the right hand
side of Fig. 1(a) is still not well defined even in the case of
32 projections.
FBP is not a recursive algorithm - the process of recon-

struction depends on one projection at an iteration step and
can consequently be completed disregarding any supple-
mentary input. The availability in advance of all projec-
tions to be used is required for recursive algorithms like
ART [5], as MENT [6] is regarded here as a derivative of
the algebraic techniques solving a minimization task in a
different manner.
The ART, as the name implies, uses a matrix-like indi-

rect approach to the inversion problem - the different pro-
jections are considered as a set of linear equations with the
values of the function to be reconstructed as unknown vari-
ables. If the wanted density distribution is described as con-
stituted ofK pixels and wnk represents the contribution of
the k-th pixel to the n-th projection, with n denoting some
of the available N projections, a projection can be written
in the form

pn =
K∑

k=1

wnkρk. (3)

Solution of a system of linear equations like Eq. (3) is to be
found.
ART is an iterative algorithm - the wanted density of a

bin is calculated over a number of steps as on each step
projections of the current guess are snapped. The repetitive
procedure continues until the computed projections resem-
ble the given ones according to some set of criteria. Addi-
tive ART (aART) applies a correction to the k-th pixel on
the (i + 1) iteration step of the kind

Δρ
(i+1)
k =

⎛
⎜⎜⎜⎜⎜⎝

p(i+1) − q(i+1)

K∑
j=1

w2
(i+1)j

⎞
⎟⎟⎟⎟⎟⎠w(i+1)k, (4)

where q(i+1) is the projection calculated from an iterative
guess (i + 1) and p(i+1) is the one, given in advance from
the measured data.
If the system described by the equations like (3) is under-

determined, i.e. the number of pixels is more than the num-
ber of projections, a unique solution does not exist. Such is
the case for the PITZ setup of four screens and also for re-
construction applied on double-quadrupole scan data. On
the other hand, there might be none or multiple solutions
for an overdetermined system. The MENT algorithm gives
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a possibility to select an outcome most consistent with the
measured data. As it is used here MENT has already been
described in [6, 3].
Fig. 2 shows the results of aART and MENT applied

to the same four projection as in Fig. 1(b). An additional
constraint for non-negative pixel content has been applied
to the ART, usually known as Constrainted Additive ART
(caART), andMENT requires such by definition. The qual-
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Figure 2: caART and MENT applied to four equidistant ro-
tations. The object of reconstruction is the one in Fig. 1(a).

ity of the resulting distributions is visibly improved as ex-
pected according to the fact that a minimization task would
be needed for an underdetermined system. Smearing ar-
tifacts like those that can be seen in the outcome of FBP
are not present, the projected area of the central gaussian
distribution is refined as well as is the uniform spot on the
right hand side.

RECONSTRUCTION FROM NUMERICAL
DATA

The decision for choosing a suitable reconstruction algo-
rithm depends on its performance on numerical data. Here
the caART and MENT are applied on a simulated electron
beam distribution, matched to the optics of the lattice and
tracked with ASTRA [8]. The influence of space-charge
forces is included in the tracking as they tend to be signif-
icant for the PITZ operating conditions. The periodicity
of the particle trajectories is expressed with the mismatch
of the measured Twiss β-functions from the design values
at the positions of observation. The numerical tracking re-
veals maximum β-mismatches of 3 and 6% for the hori-
zontal and the vertical planes respectively. Fig. 3 shows the
original phase-space and the resulting reconstructions for
the horizontal plane. Both methods manage to reproduce
the double-like structure in the core of the beam as visually
MENT surpasses in better restoration of the density in the
tails. Table 1 contains the relative deviations of the recon-
structed distributions with respect to the original.
As an alternative measure of the quality of the recon-

struction, constructive for distributions non-symmetric in
neither of the x or x′ planes, the skewness could be used.
Except with the second central moments and the covari-

ance, needed in order to determine the transverse emit-
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Figure 3: Realistic distribution and its reconstructed using
caART and MENT.

Table 1: Relative errors between the original distribution
and its reconstructed from Fig. 3.

Algorithm σx [%] σx′ [%] σxx′ [%]
caART 1.59 3.57 5.94
MENT 0.75 0.64 2.33

tance, the quality of the reconstruction should be judged
from point of view of what charge density it represents.
A convenient interpretation is offered by the mean square
norm

‖Δ‖ =

√∑
x

∑
x′ (ρorig − ρrecon)2∑

x

∑
x′ ρ2

orig

, (5)

where ρrecon and ρorig denote the resulting reconstruction
and the original distribution correspondingly. For such an
estimation to be valid, effects from low-density bins should
be discarded and the bin size of the two objects has to be
equal. ASTRA calculates the moments of the distribution
in a statistical manner, whereas here two discrete binned
distributions are compared. If the binning does not repre-
sent the underlying data according to its specific features,
lateral bins with low content would introduce gaussian tails
and consequently differently calculated beam sigma matrix
elements. This has been taken into account in advance as
the bin width δ has been optimized using a minimization of
a cost function F (δ) according to

F (δ) =
2μ − var

δ2
(6)

for μ and var being the mean and the variance of the un-
derlying spatial distribution [7] . Using the norm and the
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reconstructions above, MENT and caART yield equal val-
ues until the second digit after the decimal point. In the first
case the norm is ‖Δ‖ = 0.247 and at the second ‖Δ‖ =
0.258.
An alternative for the comparison is based on the equiv-

alent ellipse emittance representation of the phase space,
i.e. compare the resulting and original distributions from
which only parts within ξ times the projected emittance are
taken into account. Low intensity bins outside the contour
defined by ξ.ε are discarded. The projected emittance is
calculated separately for each of the two distributions - the
original ASTRA one, describing the real phase space in
some of the transverse planes, and the reconstruction. By
this, the total area in the phase space is defined and a two-
dimensional ’peel-off’ cut on the tails is applied afterwards.
The resulting fractional areas inside the contour are consid-
ered in order to calculate the norm. The outcome in such
a case slightly favors the MENT - ‖Δ‖ = 0.249, while for
the ART this value is 0.260. This can also be seen in Fig. 4
where different fractions of the distributions are taken into
account. The horizontal lines represent the case when the
two distributions are compared within their total area. For
fractional area of above six the norm converges to the value
for which no cut has been done as MENT solutions are
closer. i.e. the core part is always reconstructed smoother
with better accuracy than using ART.

Figure 4: Mean square norm for different cuts of the phase-
space distributions. A cut is done simultaneously on the
original and the reconstructed phase spaces. The transverse
emittances defining the area of the cut are calculated sepa-
rately from the data describing the original and the recon-
structed distributions. The horizontal lines indicate that the
full phase spaces have been taken into account.

CONCLUSIONS

The work presents some investigations done in order to
find a tomographic reconstruction algorithm suitable to be
used with limited projection data. Several algorithms have
been tested, namely Filtered Backprojection, Constrainted
Additive Algebraic Reconstruction Technique and Maxi-
mum Entropy. The last two inherit the ideas behind the
FBP and as such they outperform it - a major reason for
that is the fact that both are trying constructively to discard
pixel content which are not consistent for any of the projec-
tion data. A number of concepts on how the reconstruction

results have been evaluated are presented as well. A con-
clusion that MENT represents the underlying phase space
with better accuracy can be drawn.
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