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Abstract

The beam-beam simulation code (BBSIMC) is a incoher-
ent multiparticle tracking code for modeling the nonlinear
effects arising from beam-beam interactions and the com-
pensation of them using an electromagnetic lens. It imple-
ments short range transverse and longitudinal wakefield,
dipole noise to mimic emittance growth from gas scatter-
ing, beam transfer function, and wire compensation mod-
els. In this paper, we report on recent improvements of the
BBSIMC including a beam-beam compensation model using
a low energy electron beam and a current carrying wire.

INTRODUCITON

A beam-beam simulation code BBSIMC has been devel-
oped at FNAL over the past few years to study the effects of
the machine nonlinearities and the beam-beam interactions.
The code is under continuous development with the empha-
sis being on including the important details of an accelera-
tor and the ability to reproduce observations in diagnostic
devices. At present, the code can be used to calculate tune
footprints, dynamic apertures, beam transfer functions, fre-
quency diffusion maps, action diffusion coefficients, emit-
tance growth and beam lifetime. Calculation of the last two
quantities over the long time scales of interest is time con-
suming even with modern computer technology. In order
to run efficiently on a multiprocessor system, the resulting
model was implemented by using parallel libraries which
are MPI (interprocessor Message Passing Interface stan-
dard) [?], state-of-the-art parallel solver libraries (Portable,
Extensible Toolkit for Scientific Calculation, PETSc) [?],
and HDF5 (Hierarchical Data Format) [?]. The follow-
ing section describes the physical model used in the simu-
laiton code. Some applications are presented for the Large
Hadron Collider (LHC) wire compensator and the Rela-
tivistic Heavy Ion Collider (RHIC) electron lens.

PHYISCAL MODEL

In the collider simulation, the two beams moving in op-
posite direction are represented by macroparticles of which
the charge to mass ratio is that of each beam. Fewer num-
ber of macroparticles are chosen than bunch intensity of
the beam because it becomes prohivitive for few revolu-
tions around accelerator even with modern supercomput-
ers. They are genernated and loaded with an initial distri-
bution for a specific simulation purpose according to the
beam parameters at the interaction point, for example, six-
dimensional Gaussian distribution for long-term beam evo-
lution. The transverse and longitudinal motion of particles
is calculated by transfer maps which consist of linear and

nonlinear maps. In the simulations, the following nonlin-
earity is included: head-on and long-range beam-beam in-
teractions, external electromagnetic force by current carry-
ing wire, mulitipole errors due to quadrupole triplets, and
sextupole strength of chromaticity correction. In the fol-
lowing, linear and nonlinear tracking models are described
in detail.

Transportation through arc

The six-dimensional accelerator coordinates x =(
x, x

′
, y, y

′
, z, δ

)T

are applied, where x and y are hor-

izontal and vertical coordinates, x
′

and y
′

the trajectory
slopes of each coordinates, z = −cΔt the longitudinal
distance from syncrhotron particle, and δ = Δpz/p0 the
momentuem deviation from the synchrotron. The linear
rotation between two elements denoted by i and j can be
written as

xj =
(

M D̂
0 L

)
xi. (1)

Here, M is coupled transverse map of off-momentum mo-
tion defined by M = RjM̃i→jR−1

i , where M̃i→j is the
uncoupled linear map described by twiss functions at i and
j elements, and the transverse coupling matrix R is defined
as

R =
1√

1 + |C|

(
I C†

−C I

)
, (2)

where C† is the 2 × 2 matrix and the symplectic con-
jugate of the coupling matrix C. The dispersion matrix
is described by D̂ = (0,D), and the dispersion vector

D =
(
Dx, Dx′ , Dy, Dy′

)
is characterized by the trans-

verse dispersion functions and the map M:

D = Dj −MDi. (3)

L is a longitudinal map and a nonlinearity of synchrotron
oscillations is applied by adding the longitudinal momen-
tum change at rf cavity.

Beam-beam interactions

For head-on and long-range beam-beam interactions, we
assume that one beam is strong and is not affected by the
other beam while the other beam is weak and experiences
a beam-beam force due to the strong beam during the col-
lision, so called weak-strong beam-beam model. Besides,
the charge distribution of the strong beam is assumed to be
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Gaussian:

ρ (x, y, z) =
nq

(2π)3/2
σxσyσz

exp
(
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)
,

(4)

where n is the number of particles and q is the electric
charge of the beam. Note that the coordinates (x, y, z),
denote the rest frame of the strong beam. The beam-beam
force between two beams with transverse Gaussian distri-
bution ρ (x, y) =

´
dzρ (x, y, z) is well-known, and the

expression for the slope change is given by, for elliptical
beam with σx > σy :

Δx
′
=

2ñr0

γ

√
π√

2
(
σ2

x − σ2
y

)�F (x, y) , (5a)

Δy
′
=

2ñr0

γ

√
π√

2
(
σ2

x − σ2
y

)�F (x, y) , (5b)

where F (x, y) is a complex function defined in [?]. New
constants are defined as r0 ≡ qq∗/4πε0m0c

2 and ñ ≡

n

(∣∣∣�β∣∣∣−1

+
∣∣∣�β∗

∣∣∣) /
(∣∣∣�β∣∣∣ +

∣∣∣�β∗

∣∣∣). Here, a subsript aster-

isk designates a variable of weak beam.

Electromagetic lens

It is well known that for a large separation distance
(� σ) at parasitic crossings, the strength of long-range in-
teractions is inversely proportional to the distance. Its ef-
fect on a test beam can be compensated by current carrying
wires which create just the 1

r field. The advantage of such
an approach consists of the simplicity of the method and
the possibility to deal with all multipole orders at once. For
a finite length lw embedded in the middle of a drift length
L, the transfer map of a wire can be obtained by

M(L)
w = DL/2 ◦M(L)

k ◦ DL/2, (6)

where DL/2 is the drift map with a length L
2 , and M(L)

k is
the wire kick integrated over a drift length. The change in
slopes of a test beam is(

Δx
′

Δy
′

)
=

μ0

4π

Iwlw
(Bρ)

u − v

x2 + y2

(
x
y

)
, (7)

where Iw is the current of wire , u and v are√(
L
2 + lw

)2
+ x2 + y2 and

√(
L
2 − lw

)2
+ x2 + y2 re-

spectively. Besides, we take into account the wire place-
ment including pitch and yaw angles. The transfer map of
wire can be written by

Mw = D−L/2 ◦ SΔx,Δy ◦ T−1
θx,θy

◦ DL2 ◦Mk

◦ DL1 ◦ Tθx,θy ◦ D−L/2, (8)

where Tθx,θy represents the tilt of the coordinate system by
horizontal and vertical angles θx, θy to orient the coordi-
nate system parallel to the wire, and SΔx,Δy represents a

shift of the coordinate axes to make the coordinate systems
after and before the wire agree. When the wire is paral-
lel to the beam, Eq. (??) becomes Mw = Mk. For can-
celling the long-range beam-beam interactions of the round
beam with the wire, one can get the desired wire current
and length; the integrated strength of the wire compensator
should be commensurate with the integrated current of the
beam bunch, i.e., Iwlw = cq∗n∗.

Electron lens

An electron lens is expected to improve beam lifetime
and luminosity of the colliding beams by reducing the be-
tatron tune shift and spread from the head-on collisions. A
space charge force of low-energy electron beam is acting
as a focusing or defocusing lens depending on the high en-
ergy bunches. In BBSIMC, two electron beam distribution
functions are implemented: (a) Gaussian distribution and
(b) Smooth-edge-flat-top (SEFT) distribution. The trans-
verse kick on the high energy beam from the electron beam
is given by

Δ�r′ =
2ñr0

γ

�r⊥
r2
⊥

ζ (r⊥ : σ̄) ,

where ñ is the number of electrons of the electron beam ad-
justed by the electron speed, r0 is the classic particle radius,
σ̄ is the electron beam size, and γ is the Lorentz factor. The
function ζ is given by

• for Gaussian distribution

ζ (r⊥ : σ̄) =

»

1 − exp

„

− r2
⊥

2σ̄2

«–

,

• for SEFT distribution

ζ =

√
2ρ̃0

8

»

1

2
log

„

θ2
+ + 1

θ2
− + 1

«

+ tan−1 θ+ + tan−1 θ−

–

,

where ρ̃ is a constant, and θ± =
√

2
(

r
σ̄

)2 ± 1.

Finite bunch length

The bunch length effect needs to be considered in case
of (1) the longitudinal bunch length σz is comparable to
the transverse lengths σx and σy , (2) the orbit function βx

and βy are not constant through beam-beam interactions,
and (3) the transverse beta functions are small and com-
parable to σz . We make slices of both beams moving in
opposite directions. Each slice is integrated over its longi-
tudinal boundary, and has only transverse charge distribu-
tion at the center of its longitudinal boundary. We take into
account the collision between a pair of slices: each slice in
a beam interacts with particles in the other beam in turn at
the collision points. In additon, electric field energy varies
along the bunch due to the inhomogenity of beam param-
eters in the longitudianal direction, and couples transverse
and longitudinal motions. The coupling can be modelled
by including beam-beam interactions due to the longitudi-
nal component of the electric field as well as the transverse
components [?].
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Particle Loading

At the start of the simulation, the particles in the weak
beam are distributed over the phase space. The number of
simulation particles is limited by the computational power.
In order to make the best use of a relatively small number
of simulation particles compared to the bunch intensity, the
initial distribution should be optimized. Indeed the initial
distribution is very important because a proper choice can
reduce the statistical noise in the physical quantities. The
simulation particles are generated in two steps: (i) The par-
ticle coordinates (x, y, z) of particles can be directly gen-
erated from the spatial Gaussian distribution, ρ̄ (x, y, z) =
ρ̄x (x) ρ̄y (y) ρ̄z (z), where ρ̄ζ (ζ) = ρ̄ζ0 exp

(
− ζ2

2σ2
ζ

)
.

Since the particle coordinates are not correlated, one can
generate them by inverse mapping of each cumulative dis-
tribution function of horizontal, vertical, and longitudinal
Gaussian distributions, using bit-reversed sequence to min-
imize nonphysical correlations [?]. (ii) An equilibrium dis-
tribution in transverse phase space e.g. in the (x, x ′) plane

is ρ̂
(
x, x

′
)

= ρ̂0 exp

(
−

x2+
“

βxx
′
+αxx

”2

2σ

)
. Since the

spatial coordinate x is determined at the first step, the slope
x

′
can be obtained from the random variate r of a univari-

able Gaussian, i.e., x
′
= (r − αxx) /βx.

APPLICATIONS

LHC

Long-range beam-beam interactions are known to cause
emittance growth or beam loss in the Tevatron and are ex-
pected to deteriorate beam quality in the LHC. Increasing
the crossing angle to reduce their effects has several un-
desirable effects, the most important of which is a lower
luminosity due to the smaller geometric overlap. For the
LHC, a wire compensation scheme has been proposed to
compensate the long-range interactions by applying exter-
nal electromagnetic forces. At large beam-beam separa-
tion, the electromagnetic force which a beam exerts on in-
dividual particles of the other beam is proportional to 1

r ,
which can be generated and canceled out by the magnetic
field of a current-carrying wire. However, several issues
need to be resolved for efficient compensation. With the
present bunch spacing, there are about 30 long-range in-
teractions on both sides of an interaction point (IP). The
beam-beam separation distance varies from 6.3 σ to 12.6
σ. The resulting beam-beam force is not identical to that
generated by a single or multiple wire(s).

The wire-beam separation distance is one of major pa-
rameters which determine the performance of a wire com-
pensator. Figure ?? shows the angle-averaged dynamic
aperture for off-momentum particles with 3 σΔp/p for dif-
ferent wire-beam separations. The reference separation (9
σ) is choen as the average of beam-beam separations. The
dynamic aperture calculated at different phase angles is the
largest radial amplitude of particles that survive up to a cer-

Figure 1: Plot of angle-averaged dynamic apertures accord-
ing to wire separation distance with wire strength 82.8 Am.

Figure 2: Plot of particle loss according to wire-beam sep-
aration distance with wire strength 82.8 Am.

tain time interval; in this simulation, 106 turns. When the
beam-beam compensation is not present, the dynamic aper-
ture is around 8 σ. However, for a wide separation range,
the dynamic aperture is smaller than 8 σ by about 2-4 σ.
The dynamic aperture decrease linearly as the separation
decreases. Figure ?? shows the results of particle loss in
1× 106 turns for different wire-beam separations. The par-
ticle loss saturates at large separation while there is a sharp
increase of particle loss at small separation. We directly
see the minimum particle loss between 0.9 and 1.0 of the
reference separation. It reveals that the average of beam-
beam separations is close to an optimal separation between
the wire and the high energy bunch.

RHIC

Increasing the luminosity requires higher beam intensity
and often focusing the beam to smaller sizes at the inter-
action points. The effects of head-on interactions become
even more significant. The head-on interaction introduces a
tune spread due to a difference of tune shifts between small
and large amplitude particles. In the proton-proton run of
RHIC, the maximum beam-beam parameter reached so far
is about ξ = 0.008. The combination of beam-beam and
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Figure 3: Plot of particle loss according to electron beam
intensity for a 1σ Gaussian electron beam profile .

machine nonlinearities excite betatron resonances which
diffuse particles into the tail of beam distribution and even
beyond the stability boundary. It is therefore important to
mitigate the head-on beam-beam effect.

In order to seek the electron lens parameters at which the
beam life time is improved, we choose three different elec-
tron beam distribution functions: (a) 1σ Gaussian distribu-
tion with the same rms beam size as that of the proton beam
σ, (b) 2σ Gaussian distribution with rms size twice that of
the proton beam, and (c) Smooth-edge-flat-top (SEFT) dis-
tribution with an edge around at 4 σ. When the electron
beam profile matches the proton beam, the full compres-
sion of the tune spread requires the electron beam intensity
Ne = 4 × 1011 which is defined as the electron beam in-
tensity required for full compensation or 1x bbc. Figure
?? shows the results of particle loss for different intensities
with the 1σ Gaussian electron beam profile. At an inten-
sity of 1x bbc, the particle loss is nearly six times the loss
without beam-beam compensation. The beam lifetime of
1
2x bbc however is comparable with that of no bbc. As
the electron beam intensity is decreased, the particle loss
decreases significantly below 1

4x bbc, and is reduced to
30% of no bbc at 1

8x bbc.
For the 2σ Gaussian and SEFT electron beam profiles,

we calculated dynamic apertures and particle loss for dif-
ferent electron beam intensities. The results are summa-
rized in Table ??. The upper limits of the electron beam
intensity for the two distributions are chosen so that peak
of the electron profile is matched to that of 1x bbc at 1σ
Gaussian. For the 1

2x bbc and 1x bbc of 2σ Gaussian pro-
file, there is a small increase in the dynamic aperture of off-
momentum particles. There is however a significant reduc-
tion in beam loss, for example, below 10% of the particle
loss without beam-beam compensation when the electron
beam intensity is 1

2x bbc. The dynamic aperture obtained
with the SEFT profile remains almost the same up to 2x
bbc. Nevertheless a significant improvement of beam life-
time is also observed below 2x bbc. There is a threshold
electron beam intensity below which beam life time is in-
creased: 1

2x bbc for the 1σ Gaussian, 2x bbc for the 2σ

Profile Intensity(
4 × 1011

) DA
(σ)

Particle loss†

(%)
1σ Gaussian 1 4.48 635

1/2 5.10 115
1/4 5.44 63
1/8 5.63 30

2σ Gaussian 4 3.53 93
2 5.05 10
1 5.40 8

1/2 5.63 6
SEFT 8 3.60 330

4 4.77 21
2 5.46 22
1 5.47 6

1/2 5.57 6
†relative to that without beam-beam compensation

Table 1: Comparison of dynamic apertures and particle loss
for different electron beam profiles and intensities.

Gaussian, and 4x bbc for the SEFT profile. Particle loss
is relatively insensitive to electron lens current variations
below threshold current with the 2σ Gaussian and SEFT
profiles. This looser tolerance on the allowed variations in
electron intensity is likely to be beneficial during experi-
ments.

SUMMARY

In order to study the effects of the machine nonlinear-
ities and the beam-beam interactions, and the effective-
ness of compensation schemes of beam-beam interactions,
we have developed a six-dimensional weak-strong code
BBSIMC. The simulations are carried out using both LHC
and RHIC. The results of LHC simulation show that the
particle loss is minimized at the wire separation which cor-
responds to the average of beam-beam separations. We ob-
served, from the redults of RHIC, that there is a threshold
electron beam intensity below which proton beam life time
is increased. A wider electron beam profile than the proton
beam at the electron lens location is found to increase beam
life time.
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