
THE PYTHON SHELL FOR THE ORBIT CODE *

A. Shishlo, J. Holmes, T. Gorlov, ORNL, Oak Ridge, TN 37831, U.S.A.

Abstract
A development of a Python driver shell for the ORBIT

simulation code is presented. The original ORBIT code
uses the SuperCode shell to organize accelerator-related
simulations. It is outdated, unsupported, and it is an
obstacle to future code development. The necessity and
consequences of replacing the old shell language are
discussed. A set of core modules and extensions that are
currently in PyORBIT are presented. They include
particle containers, parsers for MAD and SAD lattice
files, a Python wrapper for MPI libraries, space charge
calculators, TEAPOT trackers, and a laser stripping
extension module.

INTRODUCTION
The original ORBIT code has been very useful in the

SNS ring design and in simulations of collective effects
[1]. Thanks to a flexible structure, ORBIT can be
extended very easily. After years of development by many
scientists, ORBIT includes collimation, different types of
space charge, impedances, electron-cloud effects, and
numerous other features. These features are combined
together by using a driving shell – the SuperCode (SC).
SC is an interpreter programming language resembling C.
At the time when ORBIT development started (1997),
there were not many choices of driving shell language.
SC was attractive because it is C-like, it is simple to learn,
to understand, and to extend, and it has a set of effective
auxiliary classes for arrays, vectors, strings, etc. As a
result of deep integration, the ORBIT code has become
inseparable from SuperCode, and SC has now become an
obstacle to further ORBIT development.

There are several problems related to SC. First, SC is
not an object-oriented language. This significantly slows
down ORBIT development and limits the functionality of
the code. All contemporary interpreters are object-
oriented. Second, SC is not supported by anyone. Usually
languages are surrounded by a community of users and
developers, which facilitates an immediate response to
problems and bugs. So, for SC the user is on his own.
Finally, all auxiliary classes provided by SC have been
implemented in the C++ Standard Template Library, and
this implementation is probably more efficient. In SC
none of these classes is protected by namespaces, and
they could crush the ORBIT code compilation if there is a
name conflict.

In an attempt to preserve the legacy of the ORBIT
code, the PyORBIT project has been started. The
motivation of PyORBIT is to replace the SuperCode
driver shell by a modern interpreter language, Python [2].
Unfortunately, it is not possible to directly import the
code of core ORBIT modules into the new project

because of ubiquitous SC dependencies. On the other
hand, this gives us an opportunity to start from scratch in
the architecture and the source code development and to
keep all original ORBIT physical algorithms.

DRIVER SHELL PARADIGM
PyORBIT, like the original ORBIT code, uses a driver

shell language approach instead of an input file analysis,
as in traditional accelerator codes like MAD, MAD-X,
PTC, PARMILA, Trace3D etc. These traditional codes
construct an accelerator lattice and perform calculations
according to information inside specialized input files.
They each use their own language created for the
particular code, and the list of possible tasks is predefined
and limited. PyORBIT uses another approach. We use an
existing programming language and extend it with
specific accelerator-related functionalities. The user can
create a unique simulation code in the form of a main
program or script by using a predefined set of classes and
methods.

There are several requisites for a programming
language that can be used for this scheme:

• The program language should be popular among
physicists. There are many languages that fall under
this category: FORTRAN, C, C++, Ruby, Python,
and Java.

• It should be an object-oriented language with an
automated garbage collection. This condition
eliminates FORTRAN, C, and C++.

• It should be fast. That will eliminate Ruby and
Python, which are interpreted languages.

• It should be capable of an effective usage of the
Message Passing Interface (MPI) library for parallel
calculations. That will remove our last candidate –
Java. There are several available Java wrappers for
MPI, but the overhead for array exchange makes
these packages unacceptable for us.

These constraints necessitate a two-language scheme.
To provide the necessary speed we must use FORTRAN,
C, or C++ at the low level, and Ruby or Python to
organize the calculation at the upper level. For the
PyORBIT project we chose C++ for its object-oriented
nature, better standardization, and better free compiler
availability than FORTRAN. For the upper level we
preferred Python, because its pseudo-code compilation
feature makes it significantly faster then Ruby. This
combination of a scripting language for orchestrating
simulations and a fast compilation language to perform
calculations is very popular in scientific computing [3].
Generally, code development in a scripting language is
considered 3-5-10 times faster than it is in languages like
C++ or Java. The downside of the two-level approach is
the necessity of a “glue” code to connect the codes in the
two languages.

* ORNL/SNS is managed by UT-Battelle, LLC, for the U.S.
Department of Energy under contract DE-AC05-00OR22725

Proceedings of ICAP09, San Francisco, CA THPSC052

Computer Codes (Design, Simulation, Field Calculation)

351

PYORBIT CODE STRUCTURE
The directory structure of the PyORBIT code is shown

in Fig. 1. PyORBIT consists of three main parts: a core,
extensions, and pure Python classes.

The core includes C++ classes and wrappers for them.
The wrappers define the Python user interfaces for
underlying C++ classes. After compilation of the core
source code and linking with the Python language static
library and MPI libraries, the PyORBIT executable is
placed in the “bin” directory (see Fig. 1). This executable
is an extended Python language interpreter that has all the
functionality of Python and that can dynamically operate
with classes and methods from the core and extensions.

The extensions are independent packages that have no
common classes. If two or more extensions use the same
class, it should be moved to the core of PyORBIT. Each
extension package is dedicated to some particular
physical phenomena. At this moment PyORBIT has only
one extension, a package that simulates different aspects
of the laser-assisted stripping of H- ions [4]. The
extensions are compiled into shared libraries and are
placed into the “lib” directory. The libraries are
dynamically loaded when invoked in the user’s Python
script.

The pure Python classes’ directory in Fig. 1 has two
subdirectories: one for core and one for extensions.

Figure 1: The directory tree of the PyORBIT code.

Today the C++ core of PyORBIT includes four
components important for the future development: the
MPI wrapper, the PyORBIT Bunch class, the TEAPOT
elements library, and the 2D space charge package. The
pure Python core components contain the accelerator
lattice model, the TEAPOT-like implementation of the
accelerator lattice, and the parsers for input files of MAD
and SAD accelerator codes. Below we discuss these
components.

PYTHON AND C++ CLASSES
To connect the Python and C++ levels, we want

flexibility and full control and of our logic flow.
Therefore, PyORBIT does not use an automated approach
that extends the Python language with C++ classes. To
create a wrapper class for a C++ class we follow the
standard method described in the “Defining New Types”
part of the Python documentation. Each wrapper class

inherits from a PyORBIT_Object class that extends the
standard PyObject with one void pointer to the wrapped
C++ class instance. In turn each C++ class inherits from
the CppPyWrapper class that keeps a reference to the
Python wrapping object. This cross-reference scheme
allows access to Python and C++ objects from any level,
and it is used everywhere in PyORBIT except for the MPI
library wrapper, because MPI is a collection of functions,
not classes.

PYORBIT MPI WRAPPER
From the beginning, PyORBIT was developed as a

parallel code based on MPI. At the same time all parallel
features can be switched off if the user wants to use only
one CPU. To provide this functionality, PyORBIT has the
MPI wrapper, which isolates the standard MPI functions
from the rest of PyORBIT. It accomplishes this by
wrapping the MPI functions into functions with different
names, but the same signature, and exposes these
wrappers to the Python level. At this moment 45 MPI
functions are available from the Python script level. In
addition to the MPI functions, the MPI wrapper also
transforms the MPI communicators, groups, operations,
and the MPI status to PyObjects that can be accessed
from the Python and C++ levels. The ability to move MPI
objects between Python and C++ was the main reason to
create our own MPI wrapper instead of using one of the
available open sources. It is expected that MPI on the
Python level will be used only to perform small data
exchange and to create necessary MPI communicators
which later will be used on the C++ level for fast and
massive data exchanges.

The PyORBIT MPI wrapper package is completely
independent from the rest of the PyORBIT code and can
be extracted and used anywhere.

BUNCH CLASS
PyORBIT is a particle tracking code, so a class

representing a container for particles is the most
important class of the code. The Bunch class of the
PyORBIT core is this container class. By default it keeps
6D coordinates and one flag specifying an “alive/dead”
status for each particle, and it has the flowing features:

• It is dynamic. The user can add or remove particles
from this container. Its size will adjust to the number
of particles.

• It is efficient. It provides fast access to the
coordinates and it maintains spare room to
accommodate additional particles without frequent
memory resizing.

• It is extendable. The user can dynamically assign
additional properties to each particle in the Bunch.
This allows the Bunch class to be used for different
kinds of physical problems. For instance, this
additional information could be a macro-size of the
particle, its spin, or amplitudes of different quantum
states, as for the hydrogen atom in the Laser
Stripping PyORBIT extension [4]. The possibilities

THPSC052 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

352

are numerous. The absence of this kind of
extendibility is a big drawback in the original
ORBIT code.

• It can be dumped and restored from a file.
• It has parallel capabilities. It automatically

distributes particles among CPUs in its local
communicator when it restores a bunch from a file.

• All methods of the C++ implementation are exposed
to the Python level.

The additional information that can be attached to each
particle in the bunch should be stored as a double array of
the predefined length. This condition limits the user
freedom, but it provides a fast way to exchange particle
information between CPUs in parallel calculations. Still,
this approach is general enough to be acceptable for all
physical phenomena that we have in mind right now.

As said before, the Bunch class has 6 phase-space
coordinates for each macro-particle. The Bunch class does
not define the meaning of these coordinates, and it is up
to the user to define them. In the TEAPOT-like tracking
we follow the original ORBIT. We consider them as
transverse displacements and angles for the transverse
plane, and as position and energy deviation from the
design energy for the longitudinal direction. However, in
PyORBIT we change transverse units to meters and
radians from millimetres and milliradians in ORBIT. The
longitudinal position is also given in meters instead of
radians.

ACCELERATOR LATTICE PACKAGE
The accelerator lattice package is a lightweight pure

Python implementation of a structure shown in Fig. 2.
The package includes three classes: the Accelerator
Lattice class, the Accelerator Node class, and the Action
Container class.

Figure 2: The PyORBIT accelerator lattice structure.

The Accelerator Lattice class is a container of the
instances of the Accelerator Node class (nodes). The
lattice class has methods to get the length of the lattice, to
add a new accelerator node at any place in the lattice, to
create a sub-lattice from the existing one, and to call the
“trackAction” method for each accelerator node. This
method accepts two objects: the instance of Action
Containers and a dictionary with user parameters. The
lattice puts into the parameters dictionary two references,
one to itself and one to the accelerator node.

The Accelerator Node represents a single node in the
lattice and is built according to E. Forest's concept of
“fibre bundle” [5]. Each part of the node is a container for
references to child Accelerator Nodes. When the lattice
calls for the “trackAction” method of the node, this
method is performed recursively for each child node and
executes actions that are in the Action Container. The user
should consider the Accelerator Node class as an abstract
class for subclasses that will perform meaningful actions.

The Action Container class is a keeper of user-defined
functions (actions) that will be called upon entering the
node, at each part of the node, and at the exit of the node.
By default this container is empty, and it is up to the user
to supply the calculations and their order inside the
container. The Python mechanism of lexical closures
allows one to define such actions in the source code of the
class methods.

The accelerator lattice package is a very flexible
construction that can accommodate almost any kind of
functionality, but there is no restriction in PyORBIT to
prevent other approaches to defining a model for the
accelerator lattice.

TEAPOT-LIKE ACCELERATOR LATTICE
There are two PyORBIT components that enable

TEAPOT-like tracking of the macro-particles. The first
component is the collection of C++ functions that were
developed for the original ORBIT to track 6D coordinates
of charged macro-particles through simple accelerator
elements including dipoles, drifts, quads, multipoles,
solenoids, kickers, etc. These functions were thoroughly
benchmarked against analytical models, and their source
code was directly imported into PyORBIT. The second
part is a collection of pure Python classes that are
subclasses of the Accelerator Node class. These classes
keep parameters of the nodes and call the C++ TEAPOT
tracking functions.

The TEAPOT lattice can be built right in the script by
adding accelerator nodes one by one or by analyzing a
MAD input file. PyORBIT includes a MAD parser that
can read a MAD input file specifying the structure of the
accelerator. The parser is discussed below.

At present, the TEAPOT-like lattice does not have such
nodes as a foil injection node, collimators, space charge
nodes, diagnostics nodes, etc. that are in the original
ORBIT code. We plan to import them into PyORBIT in
the near future.

MAD-FILE PARSER
The original ORBIT does not have any internal tools to

use MAD input files directly. The user has to run MAD to
get MAD output files with transfer matrices and Twiss
parameters that will be used by ORBIT. This dependency
is one of the weak points of the ORBIT code. For
PyORBIT the pure Python MAD parser is developed. It is
completely independent from the rest of the code, and it is
used as a generator for the TEAPOT-like input file for
PyORBIT. The parser can perform mathematical
calculations defined in the MAD file and can handle

Proceedings of ICAP09, San Francisco, CA THPSC052

Computer Codes (Design, Simulation, Field Calculation)

353

insertions of external files. PyORBIT also has a
modification of this parser for the SAD code input files.
The SAD code is the accelerator design and simulation
code developed by KEK accelerator theoretical group [8].

RUNGE-KUTTA TRACKER
In addition to the TEAPOT-like tracking, PyORBIT has

a package to solve the equation of motion with arbitrary
electric and magnetic fields

)(/ BvEqdtpd
 ×+⋅= (1)

The package uses the Runge Kutta 4-th order (RK4)
solver. The user must specify both electric and magnetic
fields as functions of position and time. For prototyping,
this can be done on the Python level, but the speed of
calculations will be very slow. The user also can attach a
custom implementation of the External Effects class. The
user has to define the “applyEffects” method of this class
which will be called at each time step of the RK4 solver.
This allows the user to specify other things that can
happen to the macro-particles during their motion through
the electromagnetic field region. For instance, there may
be decay, ionization, excitation, or interaction with a
collimator material. In the laser-stripping package [4] this
tracker is used to simulate the dynamics of the internal
states of hydrogen atoms in the laser field.

2D SPACE CHARGE SOLVER
As a base for future space charge modules PyORBIT

has a FFT-based Poisson solver package. The package
includes three classes: Grid2D, PoissonSolver, and
Boundary classes. The Grid2D class represents the two
dimensional rectangular grid with a space charge density
or the electrostatic potential. The PoissonSolver class
calculates the potential on the grid

 ′−

′⋅′−=
20

)(
)(

rr
rdrrr 


 ρφ (2)

by using the Fourier convolution theorem and discrete
transformation (FFT) [9].

The Boundary class is a container of arbitrary boundary
points inside the defined grid. It modifies the potential on
the grid by adding the potential in empty space [10]

[]
=

+=
N

n
nn

n
empty nbnarr

0

)sin()cos(),(θθθφ (3)

where r and θ are the usual polar coordinates, N is a
user defined maximum number of harmonics. The

coefficients na and nb are found by minimizing the sum

of potentials (2) and (3) at the boundary points in a least
squares sense. The sum of two potentials is the solution of
Poisson’s equation with zero potential on boundary
points. The number of boundary points and the number of
harmonics determine the accuracy of the solution.

Again, this package is relatively independent from the
rest of the PyORBIT code and can be used separately.

CONCLUSIONS
At present, PyORBIT does not have the full collection

of physics modules of the original ORBIT code, but it has
all the basic components to accommodate these modules.
The new capabilities of PyORBIT include the
customizable Bunch container, which provides the means
to simulate a broader spectrum of physical problems. A
fine example of these extended capabilities is the Laser
Assisted Stripping module developed inside PyORBIT
[4].

REFERENCES
[1] A. Shishlo, S. Cousineau, V. Danilov, J. Galambos,

S. Henderson, J. Holmes, M. Plum, “The ORBIT
Simulation Code: Benchmarking and Applications”,
ICAP 2006, Chamonix Mont-Blanc, France, 2-6 Oct
2006, pp. 53-58

[2] http://python.org
[3] http://www.scipy.org
[4] T. Gorlov, A. Shishlo, “Laser stripping computing

with the Python ORBIT code.” These proceedings.
[5] http://docs.python.org/extending
[6] E. Forest et al., “Polymorphic Tracking Code PTC,”

KEK Report 2002-3
[7] http://en.wikipedia.org/wiki/Closure_

(computer_science)
[8] H. Hirata, in Proceedings of the Second Advanced

ICFA Beam Dynamics Workshop, Lugano,
Switzerland, 1988 (CERN, Geneva, 1988), p. 62.

[9] R. W. Hockney and J. W. Eastwood, Computer
Simulation Using Particles, Institute of Physics
Publishing (Bristol: 1988).

[10] F. W. Jones, A Method for incorporating image
forces in multiparticle tracking with space chargein,
Proceedings of EPAC2000, (Vienna, 2000) 1381.

THPSC052 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

354

