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Abstract 
Even if common, self-described data formats are used, 

data organization (e.g. the structure and names of groups, 
datasets and attributes) differs between applications.  This 
makes development of uniform visualization tools 
problematic and comparison of simulation results 
difficult. VizSchema is an effort to standardize metadata 
of HDF5 format so that the entities needed to visualize the 
data can be identified and interpreted by visualization 
tools. This approach allowed us to develop a standard 
powerful visualization tool, based on VisIt, for 
visualization of large data of various kinds (fields, 
particles, meshes) allowing 3D visualization of large-scale 
data from the COMPASS suite for SRF cavities and laser-
plasma acceleration. 

INTRODUCTION 
Visualization is extremely valuable in providing better 

understanding of scientific data generated by simulations 
and guiding researchers in designing more meaningful 
experiments. Scientific models need to be compared with 
each other and validated against experiments.  
Consequently, most computational scientists rely on 
visualization tools.  However, visualization and data 
comparison is often made difficult by the fact that various 
simulations use very different data formats and 
visualization tools.     

Self-describing data formats are increasingly being used 
for storage of data generated by simulations. Such formats 
allow the code to store and access data within a file by 
name.  The file storage system then takes care of 
developing an index for the data.  In addition, the data can 
be decorated with attributes describing the units, 
dimensions, and other metadata for a particular variable.  
The self-describing formats now in use also help to deal 
with binary incompatibilities.  Because different machine 
architectures use different binary representations for 
numbers, a binary file written by one processor may not 
be readable by another processor.  Self-describing data 
file formats and interfaces ensure that the data is written 
in a universal binary format on all processors, and that 
software reading the data translates it to the appropriate 
architecture-specific format.   

The Hierarchical Data Format (current version is 
HDF5) [1] and the NetCDF [2] format are in common use 
in the fusion, accelerator and climate modeling 
communities.  HDF5 allows one to create a multi-tiered 
data structure inside of a file, so that one can create nested 
structures of groups and datasets.   

 
Examples of HDF5 use include plasma physics codes 

such as VORPAL [3], a 3D plasma simulation code 
developed under development and Tech-X, and 
SYNERGIA [4], a multi-particle accelerator simulation 
tool developed at Fermilab.  Both codes are actively used 
in the COMPASS SciDAC project [5].  Many other 
communities (earth sciences, fusion simulations) also use 
HDF5. 

In spite of the fact that all these codes use self-
describing data format, their files are organized very 
differently.  They often do not share the node structure, do 
not agree on attributes, use different names for physically 
similar variables and store data in different structures.  In 
other words, self-describing formats, though powerful, do 
not impose universally interpretable data structures.   

For example, VORPAL put particles data in one dataset 
with all spatial information coming first: x = data[0,:], y = 
data[1,:], z = data[2.:], followed by momenta: p_x = 
data[3,:], p_y = data[4,:], p_z = data[5:,:],  while 
SYNERGIA intermixes momenta and spatial information: 
p_x = data[0,:], x = data [1,:] etc.  

How one can guess from looking at the data what is 
what? How does one recognize that a particular dataset 
represents a mesh and what kind of mesh is it?  How does 
one indicate that a dataset is mapped to a particular mesh?  
Which data ordering is used (is it grouped by components 
or position indices)?  Using some standards and common 
metadata within these formats could resolve this problem.   

Visualization tools used by different teams are also very 
non-uniform.  For a long time, scientific community used 
IDL [6] and AVS/Express [7].  Lately, many teams are 
moving towards the freely available, open source, high-
quality visualization tools such as VisIt [8]. 

In this paper we present our efforts to develop such a 
standard for computational applications dealing with field 
and particles data.  Our approach is based on first 
identifying the entities of interest to visualization, 
relationships between these entities and then defining 
intuitive and minimalistic ways to express them using 
metadata and common constructs used in self-described 
data formats: groups, datasets, and attributes.    We call 
this data model VizSchema.   

It is then used to implement a VisIt plugin (called Vs) 
which reads visualization entities from HDF5 files into 
memory and creates VisIt data structures thus providing a 
data importing mechanism from VizSchema compliant 
HDF5 files into VisIt.  

In what follows we describe the VizSchema data 
model, Vs plugin, give examples of visualization and 
discuss future directions. ______________________________________________  
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VIZSCHEMA DATA MODEL 
Principles 

In this section we describe the elements of the 
VizSchema.  These elements identify the data structures 
that one needs to expose in order to do visualization.  
They are not about HOW the visualization is performed 
(i.e. the type of light or position of the camera); instead, 
they are WHAT is being visualized (data and geometry) 
and WHAT needs to be exposed for minimal default 
visualization.   

In designing the schema we use the following guiding 
principles: 
• VizSchema assumes that data comes as one of three 

types: variables (data which lives on a mesh 
described outside of the HDF5 node containing the 
data), variables with meshes (data which mixes 
physical values with the spatial information which is 
contained within the same HDF5 nodes) and meshes. 

• These entities are identified by HDF5 markup and 
have particular attributes specific to their types. 

• All the markup for the schema should be contained in 
the attributes so that users could choose the names of 
the data itself (typically contained in groups and 
datasets) as they please.  The markup can be 
generated during I/O or added in a post-processing 
step.  We expect these attributes to start with “vs”.    

• VizSchema attributes can refer to other entities using 
their short or fully-qualified names.  If a short name 
is used, the reader will first search in the same space 
and then enlarge the search until the matching name 
is found.  

• Each vs entity has an attribute vsType, which 
describes its category (variable or mesh, for 
example). 

• Some entities have different kinds (i.e. subtypes), in 
which case a vsKind attribute specifies the kind. 

Although, the schema entities described below use 
HDF5 lingo, mapping to the NetCDF lingo is 
straightforward; one needs just to substitute the term 
“variable” in place of “dataset.”  In the remainder of this 
section we give some details of the VizSchema elements.  

Variables and Variables With Mesh 
We assume that data comes as one of two kinds: a 

variable or a variable with mesh.  A variable represents 
data, which lives on a mesh described outside of the 
variable array, while a variable with mesh contains spatial 
information within itself.  In Particle-in-Cell simulations, 
all fields share the same mesh, so this mesh is described 
once and the values of the electric and magnetic fields do 
not contain the spatial information but rather depend on 
the tool to determine the mesh that they live on.  Such 
fields are typically “variables.”  For particle data, one 
typically outputs their momentum and position in one 
dataset, so here the tool is supposed to generate a point 
mesh from within this dataset.  So, particle data is a 
“variable with mesh.”  The suggested markup gives the 
information to the visualization tool to interpret the data.  

In the following pseudo-code snippet we show the 
variable markup in HDF5: 

 
Dataset "phi" { 
  Att vsType = "variable"  
  Att vsMesh = "mycartgrid"  
  Att vsCentering = "zonal"  
} 
 
The vsType attribute in this example indicates that this 

dataset needs to be visualized and needs a mesh called 
mycartgrid to be defined elsewhere in the file.  The 
optional attribute vsCentering instructs that the data 
should be interpolated to a zone (with the default being 
nodal).  The dimensions of the variable can be derived 
from querying the dataspace and are not needed in the 
explicit metadata.  

Since variables with mesh mix spatial and other data in 
one dataset, there should be a way to specify the data 
structure.  If the dataset’s first N indices specify the 
coordinates (like in VORPAL), one could use the 
following markup:  

 
Dataset "vorpalElectrons" { 
  Att vsType = "variableWithMesh"  
  Att vsNumSpatialDims = N    
} 
 
If the layout of data is different from this order (for 

example, like in SYNERGIA), one needs to use 
vsSpatialIndices, which would indicate which indices of 
the dataset contain spatial information: 

 
Dataset “synergiaElectrons” { 
  Att vsType = “varibaleWithMesh” 
  Att vsSpatialIndices = [1, 3, 5] 
} 
 
Since the data can be ordered in many various ways, 

one also needs to describe the ordering of the data or the 
order of indices starting from the fastest-varying.  For 
example, for the 3D case:  
 
compMinorC = (i0, i1, i2, ic) 
compMinorF = (ic, i2, i1, i0) 
compMajorC = (ic, i0, i1, i2)  
 (same as compMinorF for 1D) 
compMajorF = (i2, i1, i0, ic)  
 (same as compMinorC for 1D) 
 
In component minor order, the indices (i0, i1, i2, ic) are 

such that the component index, ic, appears last. The C 
reference would be array[i0][i1][i2][ic], while the Fortran 
reference would be array(i0,i1,i2, ic).  In component 
major, the indices (ic, i0, i1, i2) are such that the 
component index, ic, appear first. The C reference would 
be array[ic][i0][i1][i2], while the Fortran reference would 
be array(ic,i0,i1,i2). 

When addressing the array in memory, two adjacent 
memory locations can differ by incrementing either the 
first index (Fortran) or the last index (C). Since the data is 
generally written to HDF5 files without changing the 
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order, the component index must be specified. The default 
value of this attribute is compMinorC.  This attribute is 
needed to reorder data as expected by a visualization tool. 

Derived Variable 
It is often useful to define additional variables, which 

are not being dumped by a simulation but present an 
interesting thing to see as well.  That is why, in addition 
to the prime variable described above, we allow defining 
expressions using regular mathematical symbols.  For 
example, one could define a density of electric energy as 
follows: 
Group anygroupname { 
  Att vsType = "variableDefinition"  
  Att vsDefinition = "elecEnergyDensity = 

(E_0*E_0+E_1*E_1+E_2*E_2)"    
} 
 
In defining this, we assume that the visualization tool 

can parse and evaluate such expressions. These 
assumptions are valid for our VisIt plugin 
implementation, which uses Python as its expression 
language. 

Meshes 
There is no uniform classification of meshes across 

tools and experiments. Based on our experience with 
several codes, we determined that the following mesh 
type categorizations are fairly general:  
• Structured grid, which is defined by a list of points 

defined by their coordinates. 
• Rectilinear grid, which is defined by the lists of 

increasing coordinate values for each axis and is a 
specialization of a structured grid 

• Uniform grid (sometimes also called uniform 
Cartesian), which has constant distances between 
nodes in all directions and is a specialization of a 
rectilinear mesh 

• Unstructured grid, which are defined by points and 
cells of various types. 

The VizSchema markup for these mesh types is shown 
by the following examples. The first example describes a 
structured mesh with component-minor ordering. The 
dataset contains the mesh's points as an array ordered in 
X, Y, and Z, with 3 values (x,y,z) at each mesh point, for 
a total of 4 array dimensions: 

 
Dataset "mystructmesh" { 
  Att vsType = "mesh"   
  Att vsKind = "structured"   
  Att vsIndexOrder = "compMinorC"  
  Att vsStartCell = [0, 0, 0]   
} 
 
The second example describes a 2D rectilinear mesh. It 

is a group containing 2 datasets, each of which contains 
the mesh points along one axis (X, Y). The optional 
vsAxis* attributes provide a name for each axis. 

 
Group "myrectgrid" { 
  Att vsType = "mesh”   

  Att vsKind = "rectilinear"   
  Att vsAxis0 = "axis0"   
  Att vsAxis1 = "axis1"   
  Dataset axis0[n0]   
  Dataset axis1[n1]   
} 
The third example describes a 3D uniform mesh. Since 

all the mesh points are uniformly distributed, the 
coordinates of each point do not have to be provided. 
Instead, the VS attributes give the start and end position 
and number of cells along each axis, permitting a 
visualization tool to generate the mesh. 

 
Group "myunigrid" { 
  Att vsType = "mesh"   
  Att vsKind = "uniform"   
  Att vsStartCell = [0, 0, 0]   
  Att vsNumCells = [200, 200, 104]   
  Att vsLowerBounds = [-2.5, -2.5, -1.3]  
  Att vsUpperBounds = [2.5, 2.5, 1.3]   
} 
The final example describes a 3D unstructured mesh. 

Such a mesh is generated from two arrays, one containing 
the coordinates of the mesh points, and the other 
containing entries giving the set of points that compose 
each cell in the mesh. By default, the coordinate array is 
named “points” and the cell array is named “polygons”. 
The optional attributes vsPoints and vsPolygons permit 
arrays with non-default names to contain this information. 

 
Group "mypolymesh" { 
  Att vsType = “mesh”   
  Att vsKind = “unstructured”   
  Att vsPoints = "points"  
  Att vsPolygons = "polygons"  
} 
The list of supported kinds of meshes will be growing 

as we encounter more kinds of simulation data.  Some of 
them will need to have mappings to already existing types 
with the data translations implemented in the Vs plugin. 

Multi-Domain Data 
Quite often simulation data comes from multiple 

domains and uses different names in these domains, while 
it would be natural to treat it as one variable in a 
continuous domain.  For such cases, we use vsMD 
attribute, which instructs visualization tools to connect 
data having the same value of this attribute.  

Here is an example of two domain blocks that will be 
treated as a single multi-domain mesh named "edgeMesh" 
amd the two variables psiPriv and psiSol are declared to 
be an md variable named psi: 

 
Dataset "privMesh" { 
  Att vsType = "mesh"  
  Att vsKind = "structured"  
  Att vsMD = “edgeMesh” 
}  
Dataset "solMesh" { 
  Att vsType = "mesh"  
  Att vsKind = "structured"  
  Att vsMD = "edgeMesh"  
}  
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Dataset "psiPriv" { 
  Att vsType = "variable"  
  Att vsMesh = "privMesh" 
  Att vsMD = “psi”  
}  
Dataset "psiSol" { 
  Att vsType = "variable"  
  Att vsMesh = "solMesh"  
  Att vsMD = "psi"  
} 

Summary Of The Data model 
To summarize, the visualization data model consists of 

variables, variables with mesh and meshes and their 
metadata.  Variables metadata includes their names, their 
meshes, data ordering and centering.   Variables with 
mesh have metadata for their name, data ordering, 
centering and separation of values from the spatial 
information.  Meshes metadata depends on the mesh kind 
and fully describes each kind.    

There are also variables defined as expressions and 
links that allow creating multi-domain variables. 

In addition to the metadata described above, 
visualization needs additional metadata needed for correct 
allocation of the memory. For example, each dataset has 
its internal type (int, for example) and dimensions.  This 
metadata should also be extracted before the visualization 
is possible but does not have to be present in the data 
markup. 

VS PLUGIN 
Based on the data model described above, we 

implemented a C++ data reader class, which reads all the 
needed metadata from HDF5 files into the memory.  This 
reader creates an object that reflects the structure of an 
HDF5 file as it is seen by visualization – lists of variables 
with the meshes that they live on, variables with meshes, 
derived variables and meshes and all their metadata.  
Once such object is created, one uses the reader’s 
methods for reading these entities by their name.   All the 
data is returned as a void* array (consistent with HDF5 
model) for which memory should be allocated based on 
the metadata of this entity.  The interface of the reader 
class is independent of the type of the visualization tool 
and is implemented for HDF5 data. 

Next we created a VisIt plugin using the reader’s API.  
This plugin is available for the download at 
https://ice.txcorp.com/trac/vizschema/wiki/WikiStart.  We 
are in the process of adding it to VisIt repository so it will 
be available upon VisIt installations. 

EXAMPLES 
Several codes adopted VizSchema and now provide the 

compliant output during I/O.  One can also change the 
files after they have been generated using PyTables [9] 
(we have successfully using to change data as the schema 
evolved and also to annotate SYNERGIA files in 
accordance with the schema). 

The plugin code was tested on Linux and OS X and is 
installed on such supercomputers as franklin.nersc.gov.  
Figs. 1-4 show some examples of visualizations done 
using the VizSchema plugin for VisIt.  Fig. 1 is a screen 
capture of OASCR Award for Scientific Visualization at 
the 2008 Scientific Discovery through Advanced 
Computation Conference (Seattle) for the video, “Visual 
Inspection of a VORPAL Modeled Crab Cavity.” 

Fig. 2 has been used as a cover for one of the issues of 
SciDAC review magazine [10].  Fig. 3 shows 
visualization for SYNERGIA data.  Fig. 4 shows an 
example of multi-domain visualization and demonstrates 
that VizSchema is general enough to accommodate 
applications outside of computational accelerator physics: 
data from FACETS (Framework Application for Core-
Edge Transport Simulations) [11].   

CONCLUSIONS AND FUTURE 
DIRECTIONS 

Standardization of the HDF5 output using consistent 
markup for visualization proved to be useful in 
accelerator physics applications as well as other domains 
having notions of fields and particles.  The developed 
VisIt plugin is available for all interested parties. 

In the nearest future we intend to extend the schema 
and the plugin with more detailed metadata for 
unstructured meshes and bring more applications into the 
VizSchema realm.   

It will be interesting to develop a means to 
automatically annotate data with the markup.  One could 
have a text or XML input for mapping internal data to the 
data elements of the schema and then use PyTables to add 
the expected attributes.  
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Figure 1: Examples of a visualization of VORPAL data: electromagnetic fields (red and green) and magnetic stress on 
the cavity (on the walls). 

 

 
 

Figure 2: A three-dimensional VORPAL simulation models the self-consistent evolution of the wake resulting from a 
laser pulse and the acceleration of particles in a laser-plasma particle accelerator. Shown in volume rendering are the 
wake (blue) and a particle bunch (green and yellow). Courtesy of G.H. Weber and C. Geddes. 
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Figure 3: Examples of a visualization of SYNERGIA data: beam colored by the energy of the particles. 

 

 
 

Figure 4: Examples of a visualization of FACETS data: electron temperature defined in multiple domains. 
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