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Abstract

An efficient numerical method for computing wakefields
due to coherent synchrotron radiation (CSR) has been im-
plemented using a one-dimensional integrated Green func-
tion approach. The contribution from CSR that is gener-
ated upstream and propagates across one or more lattice el-
ements before interacting with the bunch is included. This
method does not require computing the derivative of the
longitudinal charge density, and accurately includes the
short-range behavior of the CSR interaction. As an ap-
plication of this method, we examine the importance of
upstream transient wakefields within several bending ele-
ments of a proposed Next Generation Light Source.

BACKGROUND

The accurate modeling of coherent synchrotron radiation
is a numerical challenge of key importance to the develop-
ment of future light sources [1]. Recent 3D simulations of
the CSR generated by Gaussian bunches of various shapes
[2] confirm that a 1D model of the longitudinal CSR wake-
field is accurate provided that the transverse rms beam size
σ⊥ satisfies σ⊥ << R(σz/R)

2/3, where R is the bending
radius and σz is the longitudinal rms beam size. A number
of such 1D models appear in the literature [3]–[7], many of
which have been implemented in existing beam dynamics
codes.

In these models, the energy loss per unit length at a lon-
gitudinal location z within the bunch is given by:

W (z) =

∫ z

−∞
λ(z′)KCSR(z, z

′)dz′, (1)

where λ is the longitudinal number density of the bunch,
and KCSR is related to the longitudinal component of the
Liénard-Wiechert field ELW of a single particle [6]. The
integration kernel KCSR varies rapidly near z ≈ z′ on
the scale R/γ3 << σz , and the integral (1) is therefore
difficult to resolve numerically. This problem is typically
avoided by computing the equivalent integral

W (z) =

∫ z

−∞

dλ(z′)

dz′
ICSR(z, z

′)dz′, (2)

where

ICSR(z, z
′) = −

∫ z′

−∞
KCSR(z, z

′′)dz′′. (3)

The kernel ICSR exhibits less singular behavior than
KCSR near z ≈ z′. However, this method requires that
one evaluate the numerical derivative of the longitudinal
charge density, which in general contains significant nu-
merical noise. It is also typical to approximate ICSR by an

asymptotic form. (See, for example, equation (19) of [4].)

In the following section, we describe an efficient method
for evaluating (1) that makes use of the longitudinal charge
density λ directly. The short-range behavior of the CSR
kernel is treated analytically, so that only longitudinal vari-
ations in the charge density need to be resolved [8, 9]. In
addition, this method can be used to treat the case of entry
and exit transient fields [4], as well as the case of transient
fields in a general lattice due to upstream elements [6].

INTEGRATED GREEN FUNCTION
METHODS

Let λj = λ(zj), j = 1, . . . , N denote the values
of the longitudinal number density of the bunch at a set
of equidistant sample points zj , j = 1, . . . , N , and let
{Pj : j = 1, . . . , N} denote a basis of piecewise poly-
nomials of given degree. This basis can always be chosen
such that Pj(zk) = δj,k. We can then write the interpolated
longitudinal density λappx ≈ λ in the form

λappx =

N∑
j=1

λjPj(z). (4)

Using (4) in (1) gives an approximate longitudinal wake-
field Wapprox ≈W of the form

Wapprox(zk) =

N∑
k′=1

λk′wk,k′ , where (5)

wk,k′ =

∫ zk

−∞
Pk′(z′)KCSR(zk, z

′)dz′.

For the models described in [3]–[6], the weights wk,k′ may
be determined analytically in terms of rational functions,
log, arctan, and polynomial roots. In particular, the quanti-
ties wk,k′ have been determined explicitly for the 1D mod-
els described in [4, 6] in the cases of both piecewise con-
stant and piecewise linear basis functions.

For example, a set of piecewise-constant basis functions
is given, for stepsize h, by:

Pk′(z) =

{
1, zk′ − h/2 ≤ z ≤ zk′ + h/2,

0, else
(6)

when 1 < k′ < k, with similar expressions for P1 and Pk.

We then have for 1 ≤ k ≤ N :

wk,k′ = ICSR

(
zk, zk′ − h

2

)
− ICSR

(
zk, zk′ +

h

2

)
,

(7)
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for 1 < k′ < k and

wk,1 = ICSR (zk, z1)− ICSR

(
zk, z1 +

h

2

)
, (8)

wk,k = ICSR

(
zk, zk −

h

2

)
− ICSR (zk, zk) . (9)

For the four cases considered in [4], the function ICSR is
given in Cases A–D, respectively, by the expressions:

RICSR

γrcmc2
= − 2(φ̂+ ŷ) + φ̂3

(φ̂+ ŷ)2 + φ̂4/4
+

1

ŝ
, (10)

where ŝ =
φ̂+ ŷ

2
+
φ̂3

24

φ̂+ 4ŷ

φ̂+ ŷ
.

RICSR

γrcmc2
= − 4û(û2 + 8)

(û2 + 4)(û2 + 12)
, (11)

where ŝ =
û3

24
+
û

2
.

RICSR

γrcmc2
= − 2(φ̂m + x̂+ ŷ + φ̂3m/2 + φ̂2mx̂)

(x̂+ ŷ + φ̂m)2 + (φ̂x̂+ φ̂2m/2)
2
+

1

ŝ
,

(12)

where ŝ =
φ̂+ x̂+ ŷ

2
+
φ̂2m
24

φ̂2m + 4φ̂m(x̂+ ŷ) + 12x̂ŷ

φ̂+ x̂+ ŷ
.

RICSR

γrcmc2
= − 2(ψ̂ + x̂+ ψ̂3/2 + ψ̂2x̂)

(x̂+ ψ̂)2 + (ψ̂x̂+ ψ̂2/2)2
+

1

ŝ
, (13)

where ŝ =
ψ̂ + x̂

2
+
ψ̂2

24

ψ̂2 + 4x̂ψ̂

ψ̂ + x̂
.

The notation appearing on the right-hand side in (10–13) is
the same as the notation used in [4].

It is possible to express the sum (5) in the form of a dis-
crete convolution, which can then be evaluated using an
FFT in O(N logN) operations. This technique has been
implemented in the code IMPACT. A routine using the more
general expression for ICSR provided in [6] has also been
developed, and may also be used when we wish to in-
clude transient effects due to CSR from upstream lattice
elements.

NUMERICAL ANALYSIS
Several methods for computing the longitudinal wake in-

tegral (1) were compared against the integrated Green func-
tion method described in the previous section. These in-
clude:

• Direct evaluation of (1) using an extended trapezoidal
rule.
• Evaluation using an integrated Green function method

with piecewise constant basis functions.
• Evaluation using an integrated Green function method

with piecewise linear basis functions.

• Evaluation of (2) using an extended trapezoidal rule,
when dλ/dz is exactly known.

• Evaluation of (2) using an extended trapezoidal rule,
when dλ/dz is approximated using a central differ-
ence formula.

These methods share the property that the local error on
each subinterval scales as O(h3). Figure 1 illustrates the
relative error in the value of the CSR wake computed at
the centroid of a Gaussian bunch as a function of step-
size, for the five algorithms above. Note that the conver-
gence behavior of the direct integration method changes
near h = R/γ3 (indicated by the vertical dashed line).
When this scale is not resolved, this method has an error
that is a factor of 105 − 106 worse than the other methods
considered here. The figure below shows the error in the
region h ≥ R/γ3, indicating that the IGF method with a
piecewise constant basis results in the smallest error over a
large range of stepsizes.

h/! 

Direct integration 

h/! 

IGF – constant basis 

IGF – linear basis 

IBP – exact deriv 

IBP – approx deriv 

Figure 1: (Upper) Relative error in the computed longitudi-
nal CSR wake at z = 0 for a Gaussian bunch with σ = 0.1
mm at 200 MeV in a bend with R = 10 m. The result
is shown for 5 distinct quadrature formulas as a function
of stepsize (log-log scale). (Lower) The same quantities
shown on a linear scale for h ≥ R/γ3.

TUACC3 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

90C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

03 Numerical Methods in Field and Radiation Computation



h/! 

!
R
/W

(0
)  

Figure 2: Sensitivity to noise in the CSR wake at z = 0 for
a Gaussian bunch for 5 distinct quadrature formulas, shown
as a function of stepsize (log-linear scale). Colors have the
same meaning as in the previous figure. The shot noise (14)
at a given step size h is determined by the two parameters
N = 20σ/h and Np = 106.

The values λj are in general obtained by projecting a
distribution of Np macroparticles into N longitudinal bins,
therefore introducing shot noise to the longitudinal density
profile of the beam. We model this noise by setting

λrj = λj(1 + εj), j = 1, . . . , N, (14)

where each εj is a normal random variable with 〈εj〉 = 0
and 〈ε2j 〉 = N/Np. The CSR wake may now be computed
using either the smooth values λj or the noisy values λrj .
We refer to the difference between these two results as the
sensitivity to noise. The rms value of the sensitivity to noise
at the centroid of a Gaussian bunch is shown in Fig. 2 for
the five algorithms described above. Each value was ob-
tained by averaging over 100 distinct random seeds. Note
that the direct integration method (red) is very sensitive to
the presence of noise, while the other methods exhibit sen-
sitivities that are comparable to one another.

APPLICATION TO NGLS
The integrated Green function method of (5) was used to

study longitudinal CSR wakefields in the spreader section
of a proposed Next Generation Light Source [1]. The 2.4
GeV spreader section directs the beam bunches into several
parallel FEL lines using a series of six 10◦ dipoles. The
CSR wake was computed inside Bend 6 (Fig. 3) using the
model of [6] with piecewise constant basis functions. Fig-
ure 4 illustrates an analytical model of the current pulse at
the spreader entry, together with the upstream contribution
of Bends 4 and 5 to the longitudinal wakefield at several
locations within Bend 6. After computing the net energy
kick experienced by particles in the bunch as they propa-
gate through the spreader dipoles, the CSR from upstream
bends was found to contribute 12% of the total energy kick
in the spreader.

!L
 

L
b 

Bend 4
 

Bend 5
 

Bend 6

!L
 L

b 

L
b 

Figure 3: The final 3 dipoles appearing in the spreader sec-
tion of a Next Generation Light Source. The longitudinal
CSR wake was computed in Bend 6 both with and without
the effects of radiation from Bends 4 and 5 included.

Figure 4: (Brown) Model of the current pulse entering the
NGLS spreader. (Curves) The difference between the lon-
gitudinal CSR wakefield in Bend 6 when computed with
and without the effects of the upstream bends 4 and 5,
shown at distances of 5–40 cm into the bend.

CONCLUSIONS
A one-dimensional integrated Green function method

using both a piecewise constant and a piecewise linear basis
has been implemented to model longitudinal CSR wake-
fields using the models described in [4, 6]. This method
does not require computing the derivative of the longitudi-
nal charge density, and accurately includes the short-range
behavior of the CSR interaction. The error is smaller than
other methods which have a comparable rate of conver-
gence. As an application of this method, we studied up-
stream transient wakefields within the spreader section of a
proposed Next Generation Light Source.
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