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Abstract
A new approach for investigation of self-consistent dis-

tributions for charged particle beam in magnetic field is
presented. According to this approach, the space of motion
integrals is introduced. Specifying charged particles density
in the space of motion integrals provides a self-consistent
distribution for charged particle beam under some condi-
tions, which are formulated. This approach allows simple
graphical representation of various distributions by means
of a special diagram.

INTRODUCTION
In the particle beam physics, dynamics of a charged parti-

cle beam is commonly described by the Vlasov Equation [1].
Its solutions are called self-consistent distributions, because
the particles move in a field which is created by them. To find
solutions of the Vlasov equation is very complicated prob-
lem due to nonlocal nonlinearity of the equation. Despite of
complexity, there are founded various solutions of the Vlasov
equation for a charged particle beam in magnetic field. The
most known solution is the Kapchinsky-Vladimirsky distri-
bution [2]. Another well-known solution is the Brillouin
flow [3]. Both of them are degenerate distributions. The so
called waterbag distribution is an example of nondegenerate
distributions [4, 5].
In the present work we formulate a new approach of in-

vestigation of self-consistent distributions of charged par-
ticles. This approach can be applied for all problems on
self-consistent distributions, but in this work we apply it
only for a charged particle beam in longitudinal magnetic
field.
We follow ideas formulated in previous works of the au-

thors [6-15]. The space of integrals of motion integrals is
introduced, and particle distribution density is specified as a
density in this space. Under some conditions, which are spec-
ified further, the phase density can be expressed through the
distribution density in the space of motion integrals. This ap-
proach equally works for cylindrical longitudinally uniform
beam propagating through longitudinal uniform magnetic
field and for nonuniform beam in magnetic and electric fields
that can vary along beam axis.
Making use of this approach gives a possibility to con-

struct new solutions of the Vlasov equation. They can be
obtained taking a linear combination of known distributions,
for example, rigid rotor distributions [16-18]. New solutions
can be also found using some integral equation.

∗ Work supported by St.-Petersburg State University grant #9.38.673.2013
† o.drivotin@spbu.ru

PROBLEM FORMULATION
Consider stationary axially symmetric longitudinally uni-

form beam propagating in a uniform longitudinal magnetic
field B. Assume that longitudinal velocity components of all
particles vz = βc are the same, and that transverse velocity
components much less than longitudinal. In this case the
phase space is four-dimensional, and the Vlasov equation
can be written in the form

v
∂ f
∂x
+

e
mγ

(
−

1
γ2

∂u
∂x
+ ev × B

)
∂ f
∂v
= 0. (1)

Here f = f (x, v) is the distribution function, x and v are par-
ticle position and velocity, e, m, γ are particle charge, mass
and reduced energy, u is self potential of the beam satisfying
to the Poisson equation and the boundary conditions

∆u = −
%

ε0
, u(0) = 0, du/dr |r=0 = 0. (2)

under assumption that beam is propagating in coaxial tube
or in empty space. Further, % is particle density in the con-
figuration space, normalized as follows∫

f (x, v) dx dv =
∫

%(x) dx =
I

eβc
, (3)

where I is the beam current.
Considering differential equations for particle trajectories

in the self field of the beam, we obtain from one of them that

M = r2(ϕ̇ + ω0), (4)

is conserves along the trajectories. The other equation takes
the form

dṙ
dt
= −ω2

0r +
M2

r3 − ε
∂U
∂r
, (5)

Equation (5) has the integral

H = ṙ2 + ω2
0r2 +

M2

r2 + 2εU . (6)

Here ω0 = eBz/(2mγ) ε = e/(mγ3), M, H are azimuthal
component of momentum and energy of transverse motion
with an accuracy up to multiplier. Integral M is well known
as the Bush integral.
The particle radial motion is shown in Fig. 1. Line 2

represents effective potential function

VM (r) = M2/r2 + ω2
0r2 (7)

for a particle with M , 0. If H is given, motion is possible
only on the segment [rmin, rmax], corresponding to this M, H .
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Figure 1: Radial motion of particles.

Line 1 represents effective potential function corresponding
to M = 0. It can be shown that if the functionV0(r) is strictly
convex then the particle trajectories are confined and for each
pair of admissible values of M and H there exists a unique
radial trajectory. In configuration space, a radial trajectory
corresponds to a set of particle trajectories such that any
trajectory of this set can be obtained by rotating of any other
trajectory by some angle.

THE SPACE OF INTEGRALS OF
MOTIONS

Let us introduce the space of integrals of motion ΩR for
a cylindrical beam with radius R, as such set of values of
the integrals of motion M, H that corresponding particle
trajectory does not go out the boundary of the beam. That
means that for all particles the inequality r ≤ R holds.

It can be shown that the space of integrals of motion ΩR

is defined by the inequalities

min
r

VM (r) < H ≤ M2/R2 + ω2
0 R2 + 2εU (R). (8)

and |M | < M∗, where M∗ is such M that the left and the
right hand sides in inequality Eq. (8) are equal.
The set Ω(r) of admissible values of M and H such that

trajectory with these M and H passes through points with
coordinate r is defined as follows

M2

r2 +ω
2
0r2 + 2εU (r) ≤ H ≤

M2

R2 +ω
2
0 R2 + 2εU (R). (9)

|M | ≤ r R

√
ω2

0 + 2ε
U (R) −U (r)

R2 − r2 . (10)

The space of integrals of motion ΩR for radially confined
beam and the set Ω(r) are represented on Figure 2. Upper
and the low bounds of ΩR Eq. (8) are marked as 1 and 2.

PARTICLE DISTRIBUTION DENSITY
In the previous section we described the particle distri-

butions with making use of the distribution function. Com-
monly, it is defined as number of particles per a unit of the
phase volume.

Figure 2: The space of integrals of motion ΩR and the set
Ω(r).

Let us introduce the concept of particle distribution den-
sity following the approach suggested in works [19, 20] As
distinct from the distribution function, the definition of the
distribution density does not require the notion of the phase
volume.

Firstly, consider the nondegenerate case. Take a cell in
a region occupied by particles. Let the edges of this cell
can be described by increments of coordinates in this region
δqi i = 1, . . . ,m where m is dimension of the region. Then
the value that put in correspondence to this cell a number
of particles in it will be called the particle density. From
mathematical point of view, such value is differential form. It
can be written in the form n = n1,...,m dq1 . . . dqm (product
of differentials is regarded as external product).
For example, if we consider density of particles in the

phase space (the phase density) then m is dimension of the
phase space, and qi are coordinates in it.
When particles are distributed on some surface in the

phase space, their distribution is degenerate, because in this
case the concept of the distribution function cannot be ap-
plied. Degenerate distributions can be described by forms of
lower degree, which can be defined analogously to the form
of top degree, corresponding to a nongenerate distribution.
The phase density satisfies to the Vlasov equation in the

covariant form

n(t + δt, Fw δtq) = Fw δtn(t, q), (11)

which was written down in the works [19, 20]. Here Fw δt

denotes the operation of Lie dragging along the vector fieldw
defined by particles trajectories by the parameter t increment
δt. If phase density is described by a form of top degree
Equation (11) can be rewritten in the form

∂n
∂t
= −Lwn(t, q). (12)

Here Lw denotes the Lie derivative along the vector field w.
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PARTICLE DISTRIBUTIONS IN THE
SPACE OF INTEGRALS OF MOTION
Let us introduce the particle distribution density in the

space of integrals of motion and f (M, H) dM dH (further
we use the letter f for designation of this density, instead
of distribution function). Under conditions formulated in
previous section, such distribution corresponds to some dis-
tribution in the phase space. To find the relation between
them, let us note that M and H can be considered as coordi-
nates in the phase space. Azimuthal angle ϕ and the phase
of a particle on the trajectory θ can be regarded as other
two coordinates. As it was assumed, particles are uniformly
distributed on ϕ and θ. Therefore,

nϕθMH =
f (M, H)

4πP(M, H)
,

where P(M, H) is:

P(M, H) =

rmax (M,H )∫
rmin (M,H )

dr
|ṙ |
=

=

rmax (M,H )∫
rmin (M,H )

dr√
H − ω2

0r2 − M2/r2 − 2εU (r)
. (13)

Substituting ñ = nϕθMH to the Equation (12), we get

∂ñ
∂t
= −

∂ñ
∂ϕ

ϕ̇ −
∂ñ
∂θ
θ̇ −

∂ñ
∂M

Ṁ −
∂ñ
∂H

Ḣ = 0.

It means that uniformity of the distributionon on the trajec-
tory phases θ ensures its stationarity.

To compute the particle density in the configuration space,
take into account that

nxyMH = nϕθMH · det
�����

(
∂(ϕ, θ)
∂(x, y)

) ����� = nϕθMH

r |ṙ |
.

Then we get that

%(r) = 2
∫
Ω(r )

nxyMH dM dH =

=
1

2πr

∫
Ω(r )

f (M, H) dM dH
P(M, H)(H − M2/r2 − ω2

0r2 − 2εU (r))1/2
.

(14)
It can be obtained also that the particle distribution function
is

nxyẋẏ =
f (M (x, v), H (x, v))

2πP(M (x, v), H (x, v))
. (15)

In many problems specifying of component nxyẋẏ, which
is distribution function, is more convenient because Inte-
gral (14) can be taken in analytical form.
For example, if consider the distribution with uniform

phase density nxyẋẏ = n0. specified in ΩR under sufficient
condition

H ≤ H0 = ω
2
0 R2 + 2εu(R), (16)

we obtained the "waterbag" distribution [4, 5]. In this case
the Poisson equation takes the form

1
r

dU
dr

r
dU
dr
= −

πe f0
ε0

(
ω(R2 − r2) + 2ε(U (R) −U (r)

)
.

Its solution can be expressed through the modified Bessel
function I0. Beam profile for this distribution is described
by the expression

%(r) = %B
(
1 −

I0(
√
λr/R)

I0(
√
λ)

)
, λ = 2πen0εR2/ε0,

where %B = ε0Bzγ/2m0 is density of the Brillouin flow
which will be considered further.

Generalization of the waterbag distribution was consid-
ered in works [6, 10, 12–15]. This distribution has uniform
density component nxyẋẏ in all spaceΩR without restriction
H < H0.
Wide classes of self-consistent distributions can be ob-

tained with making use of the density inversion theorem [21]
which can be formulated as follows. Let nxyẋẏ depends only
on H, particles are situated inside the surface (16) in ΩR,
and %(r) is monotonic decreasing function.
Then the phase density can be found according to the

expression

nxyẋẏ (V0(r)) = −
1

dV0/dr
·

d%
dr
, (17)

where V0(r) is the function defined by Eq. (7).

UNIFORMLY CHARGED BEAM
Let us find such phase distributions that particle density

in the configuration space is uniform inside the beam cross-
section %xy (r) = %0, r ≤ R. Then the Poisson equation
yields U (r) = −e%0r2/4ε0.

Firstly, consider the case when particle are distributed on
the two-dimensional surface M = 0, H = 0, and assume
that the phase density does not depend of ϕ. In this case
the phase density is described by the form of the second
order defined on the surface. As particle always lie on this
surface it can be regarded as a phase space and the Vlasov
Equation (11) can be written in the form (12):

∂nrϕ
∂t
+ ṙ

∂nrϕ
∂r
+ ϕ̇

∂nrϕ
∂ϕ
= 0.

This equation is satisfied as the distribution is stationary,
ṙ = 0, and particles are evenly distributed on ϕ.
The solution under consideration corresponds to wide

known Brillouin flow [3], when particle rotates around beam
axis with the same angular velocity ϕ̇ = −ω0.As can be seen
from (6), %B = 2ε0ω

2
0/(eε) = ε0Bzγ/(2m) is the spatial

density of the Brillouin flow. In what follows, it is assumed
that %0 < %B .

For uniformly charged beam the inequalities defining ωR

Eq. (8) take the form

2ω |M | < H ≤ M2/R2 + ω2R2,

FRBJI1 Proceedings of ICAP2015, Shanghai, China

ISBN 978-3-95450-136-6

190C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

B-1 Beam Dynamics Simulation



Figure 3: The space ΩR for a uniformly charged beam.

where ω2 = ω2
0 − e%0ε/(2ε0) (see Fig. 3).

Let all particles are uniformly distributed on the straight
line segment Sk, which is tangent to upper boundary of the
set ΩR :

Sk : H = k M + H0, H0 = R2(ω2 − k2/4),

|k | < 2ω, (M, H) ∈ ΩR (segment A′B′ on Fig. 1). In this
case, the particle density in the space of integrals of motion
is described by the differential form of the first degree f0dM,
f0 > 0. In the phase space, density of such distribution is
described by the form of degree 3 defined on a three dimen-
sional surface corresponding to segment Sk . Analogously
to previous case, we get

nϕθM =
f0

4πP(M, H)
, nxyM =

nϕθM
r |ṙ |

.

Then spatial density does not depend of r :

%0 = 2
M2∫

M1

nxyM dM =
ω f0
π
= const .

Here M1, M2 are roots of the denominator in the integrand.
This distribution is known as the rigid rotor distribution

[16–18]. Here we offer simple geometrical representation
of it in the space of integrals of motion.
At k = 0 (segment AB on Fig. 1), this distribution repre-

sents wide known Kapchinsky-Vladimirsky distribution [2],
for which all particles are uniformly distributed on the seg-
ment AB (Fig. 1).
All distributions corresponding to various k give uni-

formly charged beam with the same radius R. Therefore
any linear combinations of these distributions

f (M, H) =
∑

αk fk (M, H), (18)

or their integral on the parameter k

f (M, H) =

2ω∫
−2ω

fk (M, H) dk, fk > 0. (19)

give the uniform charged beam with radius R.
As an example of nontrivial distribution which can be

obtained as integral, cite the distribution

f (M, H) =
π%0

2ω2(M2 − H R2 + ω2R4)1/2 .

This nondegenerate distribution was found for the first time
in the work [6]. It was mentioned also in the work [22].

Wide classes of self-consistent distributions can be found
if Poisson equation is regarded as integral equation for
f (M, H) [10-15].

LONGWISE NONUNIFORM BEAM
Consider stationary azimuthally symmetric beam in lon-

gitudinal magnetic field in which all particles have the same
longitudinal velocity vz . Let R and ω0 slow change along
beam axis: dω0/dz � ω0/R. Assume also that the spatial
density is uniform within each cross-section: %xy = %0(z),
r < R.

In this case, M is also integral of motion. To get another
integral, consider equation of radial motion

d2r
dt2 = −ω

2
0r +

M2

r3 + λ
r

R2 . (20)

Assume that at some instance particles lie inside an ellipse
r2/a2

0 + ṙ2/c2
0 = 1, and that the beam envelope is defined

only by particles with M = 0. Then it can be shown [8-14]
that equation for the beam envelope R(z) has the form [23]

d2R
dt2 = −ω

2
0 R +

λ

R
+

a2
0c2

0
R3 , (21)

which holds under assumption that at initial instance par-
ticles lie inside the ellipse r2/a2

0 + ṙ2/c2
0 = 1 in the phase

space of the transverse motion. Here λ = eJ/(2πε0mγ3vz ).
It is easy to show that the system of Equations (20), (21)

is particular case of the generalized Ermakov system, con-
sidered in the work [24]. Using the expression for its inte-
gral [24], one can show that the value

I = (
dq
dτ

)2 +
M2

q2 + a2
0c2

0q2. (22)

is an integral of motion. Here q = r/R, dτ = ds/R2. The
integral (22) was introduced for the first time in the work [8]
and after that was used in the works [9-14] for description
of self-consistent distributions for a charged particle beam.
When M = 0, integral (22) coincides with the Courant-
Snyder invariant [25], which is well-known in charged par-
ticle beam physics, and which is integral for the Ermakov
system also [26]. Thus, instead of integral H, we introduced
another integral of motion I, which depends not only from
motion of a particle, but from motion of a beam as a whole.
As previously, let us introduce the space of integrals of

motion and denote it by Ω̃1. It is easy to see that Ω̃1 is
determined by inequalities

2a0c0 |M | < I ≤ M2 + a2
0c2

0, (23)
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Figure 4: The space ΩR for a uniformly charged beam.

and, therefore, looks like the set ΩR for radially confined
beam on Fig. 1, where H should be replaced by I.

Consider a particle distribution of some thin layer moving
along beam axis. The phase space is four-dimensional, and
M, I, ϕ and θ can be taken as coordinates. As previously,
assume that particle uniformly distributed on phases θ and
azimuthal angle ϕ.

At first, consider a case when particles are distributed on
the two-dimensional surface M = 0, I = 0. Equation (12)
yields

∂nqϕ
∂t
+ q̇

∂nqϕ
∂q
+ ϕ̇

∂nqϕ
∂ϕ

= 0.

Therefore, such distribution is a stationary solution of the
Vlasov equation. From physical point of view, it corresponds
to a beam with radius changing along beam axis according
to Equation (21), and rotating in each cross-section with
angular velocity that also depends on z. Such distribution is
analogue to the Brillouin flow, and can be called the gener-
alized Brillouin flow.
Consider also a distribution when all particles are uni-

formly distributed on the segment Sk, which is tangent to
upper boundary of the set Ω̃1 :

Sk : I = k M + I0, I0(k) = a2
0c2

0 − k2/4,

|k | < 2a0c0, (M, I) ∈ Ω̃1 (segment A′B′ on Fig. 1). De-
scribe the particle density in the space of the integrals of
motion by the differential form of the first degree f0dM,
f0 > 0. In the initial four-dimensional phase space such
density is described by the form of degree 3 defined on the
segment Sk . Analogously to the previous case, we get

nϕθM =
f0

4πP(M, I)
, nx̃ỹM =

nϕθM
q |q̇ |

,

where x̃ = x/R, ỹ = y/R,

P(M, I) =

qmax(M, I )∫
qmin(M, I )

(I −
M2

q2 − a2
0c2

0q2)1/2 dq =
π

2a0c0
.

For spatial density we get

%x̃ỹM =

M2∫
M1

nx̃ỹM dM =
a0c0 f0
π

= const.

When k = 0 (segment AB on Fig. 1), we have analogue of the
Kapchinsky-Vladimirsky distribution for nonuniform beam.
It is easy to understand that taking a linear combination of
such distributions with various k we also get a solution of
the Vlasov equation.

Analogous approach can be also used for beam in external
electric field [20, 27].

CONCLUSION
As a conclusion, list the main results of this work The

spaces of integrals of motion are introduced for a longitudi-
nally uniform beam and for nonuniform ("breathing") beam.
The densities of particle distribution in these spaces are de-
fined. The relations between these densities and the phase
density, the spatial density, and the distribution function are
established. It is shown that new self-consistent distribu-
tions can be obtained as linear combinations of the rigid
rotor distributions. New integral I for longitudinally nonuni-
form beam is presented. New self-consistent distributions
are also presented.
Self-consistent distributions written down in analytical

form can be used as a beam models in optimization prob-
lems [14,28,29] and as test problems for beam simulation
software.
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