
DYNAMIC KERNEL SCHEDULER (DKS) – ACCELERATING THE
OBJECT ORIENTED PARTICLE ACCELERATOR LIBRARY (OPAL)

U. Locāns, University of Latvia, Riga, Latvia and PSI, Villigen, Switzerland
A. Adelmann, A. Suter, PSI, Villigen, Switzerland

Abstract
Hardware accelerators, such as graphical processing units

(GPU) and Intel Many Integrated Core (MIC) processors,
provide a huge performance potential for HPC applications.
However, due to different hardware architectures and devel-
opment frameworks, developing fast and manageable code
for these devices is a challenging task, especially when inte-
grating the usage of co-processors in large applications, such
as OPAL. DKS provides a slim software layer that separates
device specific code from the host application and provides
a simple interface to communicate and schedule task exe-
cution on the device. Algorithms in DKS are implemented
using CUDA, OpenCL, and OpenMP to target different de-
vices. The first version of DKS was integrated in OPAL to
speed up the FFT based Poisson solver and Monte Carlo
simulations for particle matter interaction. The concepts of
DKS and its integration with OPAL will be presented, as
well as results showing speedups in the range of 9x to 150x
for OPAL simulations using GPU or Intel MIC.

INTRODUCTION
Dynamic Kernel Scheduler (DKS) and its integration in

Object Oriented Particle Accelerator Library (OPAL) is pre-
sented in this work. The aim of DKS is to ease the use
of hardware accelerators in large host applications, such as
OPAL. This is achieved by seperating all the accelerator
and framework specific code in a seperate layer and provid-
ing a simple interface that can be implemented in the host
application. This interface allows host application to com-
municate with DKS to schedule memory management, data
transfer and kernel execution on the device. DKS contains
function implementations writeen using CUDA, OpenCL,
and OpenMP to allow the targeting of different accelerators
that may be available on the system.
The ability of DKS to have implementations using dif-

ferent frameworks and libraries, and switch between them
from the host applications allows not only to target hardware
accelerators of different types and fine tune code to gain the
maximum performance from each device, but also provides
some software investment protection. In case some hard-
ware architecture is no longer manufactured or some new
architecture or development framework emerges only DKS
needs to be updated.

The first version DKS was integrated into OPAL to accel-
erate its FFT based Poisson solver and Monte Carlo simula-
tions. This DKS version uses CUDA kernels and OpenMP
offload pragms to allow OPAL to accelerate the code using
GPU or Intel Many Integrated Core devices.

DKS CONCEPT AND ARCHITECTURE
DKS is a slim software layer between the host application

and the hardware accelerator, as depicted in Figure 1. The
aim of the DKS is to allow the creation of fast fine tuned
kernels using device specific frameworks such as CUDA,
OpenCL, and OpenMP. On top of that, DKS allows the easy
use of these kernels in host applications without providing
any device or framework specific details. This approach
facilitates the integration of different types of devices in the
existing applications with minimal code changes and makes
the device and the host code a lot more manageable.

CPU(s)

Application code

DKS

GPU(s)

MIC(s)

Figure 1: The concept of the Dynamic Kernel Scheduler.

DKS architecture is split into three seperate parts:
1. Communication functions, that handle memory allo-

cation and data transfer to, and from, the device. All
the memory management is left up to the user so the
data transfers and memory allocation can be scheduled
only when necessary. GPU streams are suported so
asynchronous data transfer and kernel execution can be
implemented.

2. Function library, witch contains algorithms written in
CUDA, OpenCL and OpenMP to target different de-
vices and DKS can switch between implementations
based on the hardware that is available.

3. Auto-tuning functionality, which is not part of the first
DKS version. The aim of auto-tuning is to select the ap-
propriate implementation of the algorithm and change
the launch parameters according to the devices that are
available on the system in order to gain the maximum
performance.

MODWC3 Proceedings of ICAP2015, Shanghai, China

ISBN 978-3-95450-136-6

20C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

F-1 Parallel Computing and Emerging Technologies



Host

Stream 1

Stream 2

Initialize, data transfer, launch kernels

I

Receive data

Receive data FFT X IFFT Send data

Greens func. FFT

φ

ρ ρ̂ φ

G Ĝ

Figure 2: Sequence diagram of the FFT Poisson Solver run with DKS.

OPAL AND DKS
OPAL (Object Oriented Particle Accelerator Library) is a

parallel, open source C++ framework for general particle ac-
celerator simulations which includes 3D space charge, short
range wake fields, and particle matter interaction. OPAL is
based on IPPL (Independent Parallel Particle Layer) which
adds parallel capabilities. Main functions inherited from
IPPL are structured rectangular grids, fields, parallel FFT,
and particles with the respective interpolation operators.
Other features are expression templates, and massive paral-
lelism (up to 65000 processors) which allows it to tackle the
largest problems in the field.

FFT Poisson Solver in OPAL
The Poisson solver is an essential part of any self-

consistent electrostatic beam dynamics code. From the –
time to solution – point of view, we observe that in the order
of 1/3 of the computational time is spend in this algorithm.
In many of the physics application, the bunch can be

considered as small compared to the transverse size of the
surrounding beam pipe (∂Ω). If this is the case the con-
ducting walls can be neglected and, we can solve an open
boundary problem. Here we follow the method of Hockney
and compute the potential on a grid of size 23MxMyMz ,
assuming 3 spatial dimensions of the problem. The cal-
culation then is making use of Fast Fourier Transform
(FFT) techniques, with a computational effort scaling as
O(23MxMyMz (log2 2MxMyMz )3) [1–3].

FFT Poisson Solver in DKS
In DKS the FFT Poisson solver is implemented using

CUDA to target NVIDIA’s GPUs. It uses NVIDIA’s cuFFT
library to perform the FFT, separate kernels to calculate the
Greens function and perform the multiplication on the GPU.
To overlap the computation of the Green’s function and the
transfer of the charge density, ρ, CUDA streams are used.
The implementation in DKS allows for multiple CPUs on the
same node to share one GPU device, this is achieved using
CUDA inter process communications. For the FFT Poisson
solver one of the MPI processes acts as a main process and
initializes memory allocation and kernel execution on the
device. The other MPI processes meanwhile only send and
receive data to and from the GPU. The sequence diagram
in Figure 2 shows the steps executed for the FFT Poisson
solver on the host and GPU.

Particle Matter Interaction in OPAL
One of the features in OPAL is the ability to perform

Monte Carlo simulations of the particle beam interaction
with matter. This is mostly used for simulations of degrader
for proton therapy. A fast charged particle moving through
the material undergoes collisions with the atomic electrons
and loses energy. In addition, particles are also deflected
from their original trajectory due to the Coulomb scattering
with nuclei, as shown in Figure 3. The energy loss in OPAL
is calculated using Bethe-Bloch formula and the change
of particle trajectory is simulated using Multiple Coulomb
Scattering and Single Rutherford Scattering [4–6].

E0 E

L

Figure 3: Particle matter interaction, final energy E < E0
and larger momenta spread due to Coulomb scattering and
the large angle Rutherford scattering.

At every time step when the particle beam is inside a
material the following steps are executed.

• calculate the energy loss of the beam
• delete the particle if the particle’s kinetic energy is
smaller than a given threshold

• apply Coulomb & Rutherford scattering to the beam

Particle Matter Interaction in DKS
DKS contains CUDA and OpenMP implementations al-

lowing OPAL to offload the simulations of particle matter
interactions to GPUs and Intel MIC devices. DKS contains
algorithms to allow offload the simulations of energy loss,
Coulomb scattering and Rutherformd scattering. In adition
particle drift before and after the material using time inte-
gration scheme can also be offload to the device.

Proceedings of ICAP2015, Shanghai, China MODWC3

F-1 Parallel Computing and Emerging Technologies

ISBN 978-3-95450-136-6

21 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Communication between host and device is minimized
as much as possible by keeping the particles that are mov-
ing through the material in the device memory. They are
only transfered to the host once they exit the material. To
get the correct distributions for energy loss and scattering
NVIDIAS’s cuRand and Intels MKL VSL libraries are used.
In order to improve the data access paterns of the algorithm
and assist with the vectrorization for the Intel MIC, data
layout of the particles is organized in structure of arrays
format.

RESULTS
To test OPAL with DKS a series of test simulations where

run. First the simulations where run on the CPU, where
original OPAL’s implementations of FFT Poisson solver
and Monte Carlo simulations are used. Additional test runs
where OPAL uses DKS to offload these tasks to GPU or
Intel MIC where perfomed to test the performance of the
algorithms in DKS. The test system consists of host with two
Intel Xeon e5-2609 v2 processors with total 8 CPU cores, a
Nvidia Tesla K20, Nvidia Tesla K40 and a Intel Xeon Phi
5110p.
To test the OPAL FFT Poisson solver performance with

DKS, a similar problem setup as reported in [7, 8] was used.
Results in Table 1 show the results fromCPU simulations run
on 8 cores and simulations using GPU. For larger grid sizes
where the calculation of Greens function can be overlaped
with data transfer we can observe a speedup of up to ×12
compared to the CPU version.

Table 1: OPAL FFT Poisson Solver Results

FFT size DKS FFTPoisson FFTPoisson
Time (s) speedup

64×64×32
no 22.53
K20 7.42 ×3
K40 7.32 ×3

128×128×64
no 206.73
K20 32.15 ×6.5
K40 25.87 ×8

256×256×128
no 1879.84
K20 202.63 ×9.3
K40 160.87 ×11.7

To test the Monte Carlo simulations for particle matter
interaction a test case where particle beam moves through a
L = 1 cm thick graphite slab, mimicking a degrader device
used in proton therapy. Table 2 shows the benchmark results
for these simulations using varios number of particles. Due
to current limitations of OPAL CPU simulations where run
only on one CPU core. The results show that significant
speedup in these simulations can be achieved on the acceler-
ators compared to the host, but it is also observed that GPU
significanlty outperforms Intel MIC.

Table 2: OPAL Degrader Results

Par-
ticles

DKS Degrader
time(s)

Degrader
speedup

Integra-
tion

time(s)

Integra-
tion

speedup

105

no 20.30 3.46
MIC 2.29 ×8 0.89 ×4
K20 0.28 ×72 0.15 ×23
K40 0.19 ×107 0.14 ×24

106

no 206.77 34.93
MIC 5.38 ×38 4.62 ×7.5
K20 1.41 ×146 1.83 ×19
K40 1.18 ×175 1.21 ×29

107
no 2048.25 351.64
K20 14.4 ×142 17.21 ×20
K40 12.79 ×160 11.43 ×30

SUMMARY
In this paper we presented the first version of Dynamic

Kernel Scheduler whitch provides a software layer between
host application and hardware accelerators. This allows to
create a fine tuned code for different hardware accelerators
using different frameworks and easily integrate it into ex-
isting host applications. DKS was integrated into OPAL to
offload FFT based Poisson solver and Monte-Carlo simula-
tions for particle matter interaction to GPU and Intel MIC
using either CUDA or OpenMP. The results of this work
show that DKS can be used to substantially speed up exist-
ing host applications with minimal additions and changes to
host code. Seperating the device specific code in a different
layer allows managing and fine tunining the code more easily
and it also keeps the host application a lot more portable
since all the device and framework specific details are han-
dled by DKS.

REFERENCES
[1] R.W. Hockney, Methods Comput. Phys. 9, 136-210 (1970).

[2] J.W. Eastwood and D.R.K. Brownrigg, J. Comp. Phys, 32,
24-38 (1979).

[3] R.W. Hockney and J.W. Eastwood, “Computer Simulation
using Particles,” Taylor & Francis Group (1988).

[4] Stopping Powers and Ranges for Protons and Alpha Particles,
ICRU Report 49 (1993).

[5] K.A. Olive et al., Particle Data Group, Chin. Phys. C, 38,
090001 (2014).

[6] W.R. Leo, Techniques For Nuclear And Particle Physics Ex-
periments.

[7] Y. Bi, A. Adelmann, et al., Phys. Rev. STAB 14(5) 054402
(2011).

[8] J. Yang, Adelmann, et al., Phys. Rev. STAB 13(6) 064201
(2010).

MODWC3 Proceedings of ICAP2015, Shanghai, China

ISBN 978-3-95450-136-6

22C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

F-1 Parallel Computing and Emerging Technologies


