
PYTHON-BASED HIGH-LEVEL APPLICATIONS DEVELOPMENT FOR
SHANGHAI SOFT X-RAY FREE-ELECTRON LASER
T. Zhang∗, J. Chen, B. Liu, D. Wang, SINAP, Shanghai 201800, China

Abstract
Shanghai soft x-ray free-electron laser is currently be-

ing built at SSRF campus of SINAP. At the same time, the
development of the high-level applications are on-going,
with the intention of building a fully open source and ro-
bust software ecosystem, Python has been chosen as the
essential developing programming language. Up to now, the
software framework has been readily established, multiple
physics-related high-level applications are under develop-
ment. Additionally, EPICS soft-IOC applications has been
built for the software debugging. The development are taken
in a distributed manner, i.e. git is used to organize the source
code and for the ease of team collaboration, specific appli-
cations are built into Python modules and finally integrated
into a single Python package named ‘felapps’ for deploy-
ment. In this paper, details about the Python-based software
development at SXFEL and the future ideas are covered.

INTRODUCTION
Shanghai soft x-ray free-electron laser (SXFEL) facility

is designed to be a two-staged seeded FEL, which baseline
physics operation mode is cascaded high-gain harmonic
generation (HGHG), as such the fully coherent radiations
with ultra-high brilliance at the wavelength around 8.8 nm
could be generated at the end of the second HGHG stage. It
is now under construction at the northeast of SSRF campuse
site of SINAP, CAS (see Fig. 1), the first lasing is expected
to be at the end of 2017. SXFEL also has the potential to
radiate at even high frequencies, e.g. after the beam energy
upgrading up to 1.1 GeV, FEL radiations within the water
window regime could be privided to the users [1].

Figure 1: Buiding sketch of SXFEL and SSRF.

Meanwhile, the high-level applications for SXFEL are
now under development, the mission is to build a user-
friendly, extensible, maintainable system to make the us-
age of such kind of large scientific facilities be easier. To
∗ zhangtong@sinap.ac.cn

achieve such purposes, Python has been choosed to be the
main developing programming language, since it is a fully
object-oriented designed, could be much more powerful
when incorporating third-party modules [2]. Numpy and
Scipy Python packages are used to handle complex numer-
ical computing issues, such as matrix manipulations, nu-
merical integration as well as other general mathematical
calculations [3]. The matplotlib package is used to handle
the data visualization jobs, which provides matlab-like com-
mands to deal tasks like figure plotting, but with a much
more flexible and extensible manner [4]. So the core Python,
together with Numpy, Scipy and matplotlib, actually makes
an excellent alternative for matlab.
Since the control system of SXFEL relys on EPICS [5],

all the raw data streaming come up to the high-level applica-
tions are from the lower EPICS levels. PyEpics is used to
be the interface between the lower-level and high-level [6].
The hdf5 self-explantory scientific data format is used to
be as the standard format throughout the whole high-level
applications [7, 8].

Efficient and nice-looking graphical user interface (GUI)
is of much great importance to imporve the user experience,
here we choose wxPython as the main GUI builder toolk-
its, which is the python wrapper for C++ GUI class named
wxWidget [9]. The fully open-sourced developing environ-
ment definitely make it quite flexible and also means could
save a lot budget.

SOFTWARE FRAMEWORK OF FELAPPS

The python-based high-level applications for SXFEL is
named felapps, the framework is shown in Fig. 2. The gen-
eral view is divided into two parts, the left grey part is for
applications developed for non-python, for example, legacy
apps, and the right orange part is the incubated python world.
There are apps with general purposes, like imageviewer,
dataworkshop, etc., which could be invoked and served as
universal task-handler; and the apps that designed for spe-
cific goals are basicly physics-related ones, which be used
to solve the corresponding physics problem, such as laser-
beam interaction, beam lattice matching, etc.; all these apps
are behaving as subpackages or submodules in the python
interpretation, integrating into felapps package.

Generally speaking, the design philosophy behind felapps
is trying to make the complex suff into the packages, but
the simply interface to the users, as well as the sustainable,
maintainable development procudure. In order to debug and
test the software, an intentionally designed EPICS soft IOC
is deployed. Version control system git is utilized to manage
the source code, and for the ease of team collaborations [10].

Proceedings of ICAP2015, Shanghai, China MODWC4

F-1 Parallel Computing and Emerging Technologies

ISBN 978-3-95450-136-6

23 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 2: General framework of felapps.

DEVELOPMENT STATUS OF FELAPPS
Trying to make the development extensible and main-

tainable, Fig. 3 illustrates the project structure. The utils
subpackage of felapps actually serves as the infrastructure,
providing verious classes/functions, e.g. the parseutils mod-
ule is responsible for the configuration file parsing tasks,
and GUI components & data visulization classes/functions
could be found in pltutils module, etc., newly added modules
could be classified according to the functions.

Figure 3: felapps project structure.

Up to now, multiple general purpose apps have built for
the felapps package, alphabetically, they are appdrawer, cor-
nalyzer, dataworkshop, felformula, imageviewer and match-
wizard, please note that every app could be further feature-
improved.
Appdrawer is also aliased as runfelpps, this is the main

portal to the apps that felapps package contains. Figure 4
shows the graphical interface when appdrawer is invoked,
from which other apps could be called by pushing the corre-
sponding button, the alphabet list could be extended when
new apps are created.

Imageviewer is a general purpose designed application for
data or image acquisition (Fig. 5), rich properties could be
user-defined in the Configurations menu item, once the input
EPCIS PV name is connected, data acquisition routine could
be started by clicking DAQ Start button, the acquisition
frequency could also be configured, data and image could
be saved, advanced saving function could be issued through

Figure 4: Subpackage of felapps: appdrawer.

Auto Savemenu item in Operations menu, into which, saving
data format e.g. hdf5, saving path and saving frequency
could be defined. The saved data could be post-processed
by Dataworkshop, which is a general purpose data post-
processor for felapps.

Figure 5: Subpackage of felapps: imageviewer.

After data files are imported into Dataworkshop (Fig. 6),
the corresponding images are shown on the right image grid
panel, sophisticated functions could be applied to the loaded
images/data to get processed informations.

Figure 6: Subpackage of felapps: dataworkshop.

MODWC4 Proceedings of ICAP2015, Shanghai, China

ISBN 978-3-95450-136-6

24C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

F-1 Parallel Computing and Emerging Technologies



Felformula app is designed to handle FEL calculations
(Fig. 7), after the user completes filling the electron beam
parameters, felformula shows the primary properties of FEL
radiations, parameter scan could be enabled when optimiza-
tion is demanding.

Figure 7: Subpackage of felapps: felformula.

The parameter correlation and scan feature could be han-
dled by app cornalyzer, which is brief for correlation an-
alyzer, also designed with a flexible configurable manner
(Fig. 8).

Figure 8: Subpackage of felapps: cornalyzer.

Matchwizard is the app for handling the lattice matching
tasks, however it only has the ability to do lattice visulization,
which incorporates the python package — beamline to parse

Figure 9: Subpackage of felapps: matchwizard.

and visualize the lattice file, e.g. MAD format lattice, see
Fig. 9.
It is significant to note that the initial design considera-

tion of felapps is trying to make the whole software easy to
develop and maintain, as well as to delopment. Thanks to
the great python module: setuptool, the deployment is really
easy and clear now. We can build the .whl package to directly
dictribute felapps, or upload onto PyPI web server [11] and
deploy onto other system by issing ‘pip install felapps’.

CONCLUSIONS
In general, the python-based high-level applications for

SXFEL are under development, whole picture is on the way
to build an fully-featured aigle python ecosystem, and it
is envisioned that verious applications should be benefited
from such kind of python-based infrastructure.

REFERENCES
[1] B. Liu et al., “Status of SXFEL and DCLS,” FEL’15, Daejeon,

August 2015, WEA02, (2015); http://www.JACoW.org
[2] https://docs.python.org/
[3] http://docs.scipy.org/doc/
[4] http://matplotlib.org/
[5] http://www.aps.anl.gov/epics/tech-talk/
[6] http://cars9.uchicago.edu/software/python/pyepics/
[7] https://www.hdfgroup.org/HDF5/
[8] http://docs.h5py.org/en/latest/
[9] http://www.wxpython.org/Phoenix/docs/html/main.html

[10] http://www.git-scm.com/
[11] https://pypi.python.org/

Proceedings of ICAP2015, Shanghai, China MODWC4

F-1 Parallel Computing and Emerging Technologies

ISBN 978-3-95450-136-6

25 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


