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Abstract
Several proposed storage ring electric dipole moment

(EDM) searches as well as muon g-2 experiments require

a precise understanding of the evolution of the spin during

the experiment, both theoretically as well as experimentally

in order to understand systematic errors. Here we present

the computational challenges of these experiments, our way

of dealing with them and a comparison of analytical bench-

marking cases with simulation results. In the end we give a

short overview of future improvements of our program.

INTRODUCTION
Spin is probably the least used particle property in acceler-

ator physics although it offers paths to precision physics that

can yield information about physics beyond the Standard

Model. For both, muon g-2 as well as storage ring electric

dipole moment (EDM) experiments, the relevant physical

information is encoded in the speed and direction of the

spin rotation and proper beam preparation, beam control

and polarization measurements are therefore crucial for the

measurements. Furthermore it is essential to understand all

unwanted sources of spin rotation (systematic errors), their

magnitude and possible ways of their elimination. Because

of the complexity of the equations, this can in general only

be achieved with simulations and it has to be shown that

their results are reliable.

SPIN EVOLUTION
The spin evolution of a particle with magnetic moment �μ

and electric dipole moment �d in the particles rest frame is

given by

d�S
dt
= �μ × �B∗ + �d × �E∗,

where �B∗ and �E∗ are the magnetic and the electric field in

the particles rest frame. Using Lorentz transformations for

the fields and taking the acceleration of the rest frame into

account, one arrives at the famous T-BMT equation which

in accelerator coordinates parametrized by the arc-length s
looks as follows:
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Almost every quantity depends on the position and/or

time: The fields �E and �B, the relativistic factors �β = �v/c
and γ = 1/

√
1 − β2 (only in electric fields) as well as the

curvature �κ = (1/R(s), 0, 0) (for flat rings of bending radius

R(s)) and the longitudinal unit vector �es . G = (g − 2)/2 is

the anomalous magnetic moment while the dimensionless

parameter η is given by �d = η q
2mc

�S in analogy to the g-factor

for the magnetic dipole moment. Its magnitude is about

η ≈ 2 · 10−15 for an assumed proton EDM of 10−29e · cm.

1/ṡ = 1/(ds/dt) = dt/ds is the inverse of the longitudinal

velocity of the particle. The fields have to be evaluated at

the respective position of the particle which introduces an

additional dependence on the transversal coordinates and

closely couples this equation to the equation of motion. All

of that, together with a possible explicit time-dependence

for rf-fields, makes this a very complicated equation which

in general cannot be solved analytically.

SYSTEMATIC ERRORS IN PROTON EDM
EXPERIMENT

The proton EDM experiment is proposed for an all-

electric ring with the proton momentum at its ”magic” value

p = mc√
G
≈ 0.7 GeV/c such that there are no spin rotations due

to the magnetic dipole moment in the rest frame of the ideal

particle [1]. A possible electric dipole moment will cause

a spin rotation out of the horizontal plane with an expected

rate of a few nrad/s for an assumed value of d = 10−29 e · cm.

A net radial magnetic field of only a few aT would cause

a similar effect. Shielding to this level is not possible and

additional strategies have been developed to deal with the

issue, most notably the use of counter-rotating beams with

a low and modulated vertical tune such that the oscillating

vertical beam separation caused by the radial B-field could

be measured with SQUID-based beam position monitors. In

case of strong local spin rotations, e.g. due to misalignments
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or field errors, that may almost average out along the ring,

one also has to consider the ”geometric phase effect”, i.e. the

fact that rotations do not commute and hence a sequence

of rotations around different axes generally does not cancel

completely. Other systematic errors might be caused by a

possible polarization profile of the beam or an unsuitable

extraction scheme.

OUR APPROACH
Several codes based on different ideas like mapping codes

using differential algebra or truncated power series alge-

bra, kick-bend algorithms or Romberg integration are in

use around the world. Some of these codes have difficul-

ties with explicitly time-dependent fields or difficult field

configurations. In general every code has to make various

approximations and this typically originates either in a diffi-

culty to model the real world or a trade-off between accuracy

and speed.

In order to force as little approximations as possible, we

choose a very simple but general approach and integrate the

equation of motion as well as the T-BMT equation numer-

ically. To this end many different algorithms are available

with different characteristics. In our program we imple-

ment several of them with the aim of testing and bench-

marking them with respect to accuracy and speed. Standard

algorithms like the fourth order Runge-Kutta algorithm will

be compared to newer ones and great emphasis is placed

on the modular implementation in C++ for maximal flex-

ibility. VexCL [2] (Vector Expression Template Library

for OpenCL/CUDA) is used for parallelization with either

CUDA or OpenCL as backends for a wide range of different

hardware. VexCL is a header-only library that strives to

reduce boilerplate code and supports multi-device and multi-

platform computations. OpenCL has the advantage of being

able to run on different hardware from various manufacturers

while CUDA may be faster but depends on NVIDIA GPUs.

Furthermore, VexCL is easy to learn and was demonstrated

to work with Boost-Odeint [3, 4].

Our program also comes with the option of changing the

data type for all floating point operations and allows the use

of arbitrary precision numbers via the Boost-Multiprecision

library with various backends in order to investigate errors

caused by limitations of the machine precision.

CHOICE OF ALGORITHMS
Currently our program uses several algorithms from the

Boost-Odeint library, some of which can be used with step

size control or as dense output steppers meaning that a large

step size can be used for the calculation while output at inter-

mediate points is obtained via interpolation. Both concepts

can help to speed up the calculation and improve the accu-

racy. Not all solvers from the library can be used however,

since we currently use the hard edge approximation for fields

which causes discontinuities that cannot be dealt with by

some algorithms. This excludes for example the class of mul-

tistep solvers which can be very fast and accurate because

they require very few (possibly costly) evaluations of the

right hand side of the differential equation while they may

still be of high order. Fortunately, A. Nordsieck discovered

another way of expressing the same concept which solves all

the problems associated with multistep methods [5]. This

may become implemented in our program in the future.

So far also the symplectic solvers have to be excluded

since our equation of motion is based on the Lorentz force

equation and the physical fields, while symplectic solvers

make use of the Hamiltonian approach with the potentials of

the fields. This issue will certainly be addressed in the near

future and both ways of expressing the differential equation

may coexist within the code.

SYMPLECTICITY
All of our currently implemented algorithms are not sym-

plectic meaning they neither conserve energy nor angular

momentum. For short term simulations this is not a real

concern since one can enforce approximate correctness with

smaller step sizes. It however seriously limits the capabil-

ities for precise long term tracking since the errors add up

over time and small step sizes make the program slow. On

the other hand it offers an additional path to estimating the

accuracy of the result by looking at the energy or angular

momentum drift.

The issue generally originates in the formulation of these

algorithms where a new state vector �xn+1 is calculated from

an old one �xn by a scheme like

�xn+1 = �xn + Δ�x, (1)

whereas mathematically the evolution is described by a ro-

tation R in a suitable space such that a new point of the

solution is obtained via a scheme like

�xn+1 = R · �xn. (2)

In eq. 1 the numerical errors will grow over time while they

will average out for the symplectic case in eq. 2. It should be

noted however that symplectic methods only guarantee that

the length of a vector remains constant while its direction

may still be off. Nonetheless, for long term simulations

symplectic methods seem to be a crucial requirement since

the spin evolution is tightly tied to the orbital motion. Errors

in the solution of the phase space coordinates will therefore

directly radiate into the spin part and the nonlinear behavior

there may make things even worse.

PERFORMANCE
Some previous integration codes made use of cartesian

coordinates with time as independent parameter, see e.g. [6].

This required very small step sizes of dt � 10−11 s for precise

results. It is however known that the arc length parametriza-

tion (of the individual particle) has much more favorable

properties [7] and one may expect that the accelerator co-

ordinates come close to this. Our new program employs

these coordinates and tests show that generally a step size
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Figure 1: Loss of spin of a muon during the simulation of

one millisecond with the 8th order Runge-Kutta algorithm

with a step size dt = 10−8 s and data type long double in the

Fermilab muon g-2 ring. For a step size of dt = 3·10−9 s (not

shown) the error remains below 3 · 10−16 for the complete

time interval.

corresponding to dt = 10−8s yields very good results, see

Fig. 1. This almost directly corresponds to a performance

gain of a factor of thousand. With this parametrization it

generally takes a few seconds to simulate a particle for one

millisecond when a native C++ data type like double or long
double is used. Using arbitrary precision data types makes

the code several times slower, e.g. by approximately a factor

of 4 for data type float128 (quad precision) and a factor of

10-15 for mpfr<N> data types with N significant digits.

The parallel version of the program cannot use arbitrary

precision data types yet and is far from optimal performance.

It is however still possible to simulate 10.000 particles for a

millisecond on two Intel Xeon E5-2630 hexacore processors

in the course of a few hours. Significant improvement on

this can be expected from using VexCLs kernel generation

capability and the use of GPUs as accelerators.

BENCHMARKING
Every precision tracking program has to be tested very ac-

curately. A recent paper [8] describes several high precision

benchmarks with effects that can be calculated analytically

which makes them ideal test cases for precision codes. One

of the most precise tests of the correctness of an algorithm

solving the T-BMT equation is the so-called pitch effect.

This is a frequency change of the g-2 precession of the spin

in a magnetic field when the particle undergoes vertical be-

tatron oscillations, i.e. when there is a component of the

B-field parallel to the velocity. The effect was first consid-

ered in [9] for a muon g-2 experiment and it was shown

in [8] that our tracking programs are so precise that second

order terms have to be included in the analytical calculation

and the obtained results are matched to sub-ppb level, see

Table 1.

Table 1: Comparison of Pitch Correction: in ppb between

analytical estimates and tracking results for a muon with γ =
29.3 in a magnetic ring of radius r = 7.112 m with vertical

focusing index n and maximal pitch angle θ0 = 0.5 mrad.

n Estimated (ppb) Tracking (ppb)

0.01 1.1 1.0

0.02 2.4 2.4

0.03 3.7 3.6

0.05 6.4 6.4

0.08 10.7 10.8

0.10 13.7 13.7

0.137 19.7 19.9

0.237 38.7 38.8

Table 2: Comparison of Tracking Results and Analytical

Calculations of the EDM Signal and the Systematic Error

(both in rad/s) Due to a Misalignment of the RF Wien Filter

of an Angle θ = 0.1 mrad for the Deuteron Case

Syst. Syst.

p EDM EDM error error

[GeV/c] tracking analytical tracking analytical

0.7 -1.00 -1.00 0.41 0.41

1.4 -0.74 -0.73 0.175 0.17

2.1 -0.50 -0.51 0.096 0.097

2.8 -0.36 -0.35 0.063 0.06

Another test described in detail in [10] is a systematic

error estimation for a magnetic ring with an rf Wien filter

that is operated at the g − 2 frequency and tilted by a small

angle versus the ideal vertical direction. With perfect align-

ment, the Wien filter produces a vertical magnetic field and

a radial electric field such that the Lorentz force cancels. In

the presence of an EDM it would however cause an approxi-

mately linear build-up of a vertical component of the spin

that is proportional to the EDM. In the non-ideal case when

the Wien filter is misaligned with respect to the vertical di-

rection, the B-field produced by the Wien filter also has a

radial component which also causes a spin rotation out of

the plane. Both effects were estimated analytically and were

also simulated for the proton and deuteron case. Table 2

shows the results for the deuteron case with an estimated

EDM of d = 10−18 e · cm and an angular misalignment

of θ = 0.1 mrad of the rf Wien filter of 0.1 m length and

30 MV/m electric field strength.

FUTURE WORK
There are great perspectives for the new program de-

scribed above but there also remains a lot of work to be
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done in the future. Conceptually one of the most important

improvement is the inclusion of geometric algorithms to

enforce symplecticity. Algorithms based on the Magnus

expansion [11] appear to be very efficient and precise at the

same time and can be constructed of high order. These will

be implemented in the near future.

Another very interesting option for precise long term track-

ing is the use of algorithms with global error estimation or

control. So far, only algorithms are used that can adjust their

step size such that a local error requirement set by the user

is met. This feature can significantly increase the execution

speed of the program but the local errors still build up over

time. Recent developments [12–14] show that significantly

better results may be obtained with different classes of algo-

rithms when global error control algorithms are used in step

size adjustment schemes. Although this decreases the speed

of the method it may prove very useful for our purpose and

will be implemented later.

A third issue that requires some work will be the optimiza-

tion of the parallel program version with the help of VexCLs

kernel generation facility. Currently each command is com-

piled during the execution of the program into a so-called

compute kernel. Together with the cost of starting these

kernels this is a major source of overhead. VexCL offers

however the possibility to record a sequence of commands

and build a kernel from the combined command sequence

which then can be run with much less total overhead. This

may accelerate the parallel program version significantly

although the approach works only when there are no data

dependent conditions. One therefore needs a smart way

of implementation or a split of a command sequence into

different kernels with the if-condition in between.

Last but not least, the program will be used for accuracy

studies of the used methods and studies of systematic errors

for muon g-2 and EDM experiments. Some simple initial

tests show for example that the accuracy of the code depends

on many details. In one test a solution for the simple initial

value problem

dy/dx = 1.0 · y, y(0) = 1, x ∈ [0, 10] (3)

with the analytical solution y(x) = ex was calculated with

the Boost implementation of the 4th order Runge-Kutta al-

gorithm with different optimization levels of the gcc com-

piler. The calculation was performed for different step sizes

dx = 10−k, k = 1...10 with double as the chosen data type.

No difference of the solutions for optimization levels O0 to

O3 could be observed but the option Ofast produces differ-

ent results than all others, see Fig. 2. This may generally be

not that surprising since the option -ffast-math is switched

on but since the Runge-Kutta algorithm requires only the

basic arithmetic operations (+,−, ∗, /) for this problem, it

actually is a surprise. For more complicated equations with

trigonometric functions etc. significantly worse results may

be expected. In this respect, a possible future symbolic math

capability of compilers may prove very useful. Expression

trees built with the use of expression templates could be sim-

plified and optimized which would not only reduce execution

time but could at the same time increase accuracy.
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Figure 2: Difference of the solution of eq. 3 obtained with

the 4th order Runge-Kutta algorithm from the Boost library

when the code is compiled either with the -O3 option or the

-Ofast option.

REFERENCES
[1] V. Anastassopoulos et al., arXiv preprint, arXiv:1502.04317

(2015).

[2] VexCL website: https://github.com/ddemidov/vexcl

[3] Boost website: www.boost.org

[4] D. Demidov et al., SIAM Journal on Scientific Computing

35.5, C453 (2013).

[5] A. Nordsieck, Mathematics of Computation 6.77, 22 (1962).

[6] S. Hacıömeroğlu, Y.K. Semertzidis, Nucl. Instrum. Methods

Phys. Res., Sect. A 743, 96 (2014).

[7] E.B. Kuznetsov, Journal of the Franklin Institute, 344, 658

(2007).

[8] E.M. Metodiev et al., Nucl. Instrum. Methods Phys. Res.,

Sect. A 797, 311 (2015).

[9] F.J.N. Farley, Physics Letters B 42.1, 66 (1972).

[10] W.M. Morse et al., Phys. Rev. ST Accel. Beams 16, 114001

(2013).

[11] S. Blanes et al., Physics Reports 470, 151 (2009).

[12] G.Yu. Kulikov, R. Weiner, J. Comp. App. Math. 233 2351

(2010).

[13] G.Yu. Kulikov, Russ. J. Numer. Anal. Math. Modelling, 28.4,

321 (2013).

[14] G.u. Kulikov, IMA J. Numer. Anal., 33, 136 (2013).

Proceedings of ICAP2015, Shanghai, China THAJI2

G-2 Spin Dynamics

ISBN 978-3-95450-136-6

135 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


