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Abstract
The behavior of orbits in charged-particle beam trans-

port systems, including both linear and circular accelerators
as well as final focus sections and spectrometers, can de-
pend sensitively on nonlinear fringe-field and high-order-
multipole effects in the various beam-line elements. Surface
fitting algorithms provide a robust and reliable method for
extracting this information accurately from 3-dimensional
field data provided on a grid. Based on these realistic field
models, Lie or other methods may be used to compute ac-
curate design orbits and high-order symplectic maps about
these orbits. We describe the implementation of a general
method for treating magnetic elements with curved refer-
ence trajectories that is especially well-suited for extracting
symplectic transfer maps for large-sagitta bending dipoles
with fringe fields.

INTRODUCTION
Successful design of high-performance free-electron

lasers, storage rings, and colliders relies heavily on charged-
particle optics codes with high-order nonlinear tracking and
map capabilities. To compute design orbits and high-order
transfer maps (in Lie or Taylor form) that accurately include
the effects of asymmetries, nonlinear fringe-fields and high-
order multipoles not well-captured by idealized magnet and
cavity models, realistic 3-dimensional electric and magnetic
field information for various beam-line elements is needed.
Realistic field data can be provided on a grid by 3D finite
element codes, sometimes spot checked against measured
data. However, the computation of high-order transfer maps
requires high derivatives of the fields or corresponding po-
tentials, and the direct calculation of high derivatives based
only on grid data is intolerably sensitive to noise (due to
truncation or round-off) in the grid data.

The effect of numerical noise can best be overcome by fit-
ting onto a bounding surface far from the beam axis and con-
tinuing inward using theMaxwell equations [1–4]. While the
process of differentiation amplifies the effect of numerical
noise, the process of continuing inward using the Maxwell
equations is smoothing. For beam-line elements such as
quadrupoles, sextupoles, octupoles, wigglers, and RF cavi-
ties, well-established algorithms exist that employ cylindri-
cal fitting surfaces with circular, elliptical, or rectangular
cross section [1, 3–5] to extract transfer maps to high order.
These algorithms are robust and insensitive to noise in the
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underlying grid data, but are limited to beamline elements
with straight or nearly-straight reference trajectories.

In this paper we describe a parallel code (BMAP3D) de-
signed to extract symplectic transfer maps in Lie-algebraic
form from 3D field data associated with curved magnetic
elements, such as dipoles with large design-orbit sagitta.
The data is fitted onto a bent box with straight ends that
extends into the fringe-field regions outside the beam-line
element, and the resulting map takes into account all fringe-
field effects as well as all linear and nonlinear effects up
to the desired order. We work with the canonical equa-
tions of motion based on a computed vector potential A.
If instead one wishes to integrate noncanonical equations
employing the magnetic field B, it can be obtained using
B = ∇ × A. The technique described is quite general, and
can be applied to magnetic elements with complex reference
trajectories (which need not be known exactly) and more
complex surface-fitting geometries.

SURFACE REPRESENTATION OF FIELDS
AND POTENTIALS

Consider a volume V free of electromagnetic sources and
contained within the beam-line element of interest, and let
S denote its boundary surface. The solution of Maxwell’s
equations for a single modewith time dependence exp(−iωt)
can be represented in terms of field values on the surface S.
Defining a function Φ by

Φ(r, r′) =
eik |r−r′ |

4π |r − r′ |
, k = ω/c, (1)

we have for points r interior to V that [6]:

E(r) = −
∫
S

{
iω(n × B)Φ+(n × E)×∇′Φ+(n · E)∇′Φ

}
dS′,

B(r) =
∫
S

{
i
ω

c2 (n × E)Φ−(n × B)×∇′Φ−(n · B)∇′Φ
}

dS′,

(2)

where n is the outward-directed normal at each point r′ on
the surface S. The representation (2) is smooth (analytic),
and convergent Taylor series for E and B about any point
interior to V may be obtained by expanding the integral
kernel Φ in the unprimed variables r. In this way, each
coefficient in the Taylor series is represented as an integral
over the boundary surface S.

Magnetic Vector Potential
In this paper, we consider only magnetic elements (with

ω → 0, E→ 0), and employ canonical equations of motion
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for which we require a vector potentialA such thatB = ∇×A.
Using (2) and results related to Dirac monopoles, it can be
shown [7, 8] that one can represent the vector potential in
the volume V in the form A = An + At , where:

An(r) =
∫
S

[n · B(r′)]Gn(r; r′,m)dS′,

At (r) =
∫
S

ψ(r′)Gt (r; r′, n)dS′. (3)

Here ψ denotes a magnetic scalar potential with the property
B = ∇ψ, which we assume to be known on the boundary
surface. (If ψ is not known, it can be recovered from the
components of B tangent to the surface.)
Here n denotes the unit normal at each surface point r′,

and m is an outward-directed unit vector at r′ with the prop-
erty that the ray {r′ + λm : λ > 0} does not intersect the
volume V . The vector-valued integration kernels Gn and Gt

are given by [5, 8]

Gn(r; r′,m(r′)) =
m × (r − r′)

4π |r − r′ |(|r − r′ | −m · (r − r′))
,

Gt (r; r′, n(r′)) =
n × (r − r′)
4π |r − r′ |3

. (4)

It can be verified that each kernel Gα has the two properties
∇ ·Gα = 0 and ∇×∇×Gα = 0 within the region of interest,
where derivatives are taken with respect to the variable r.
As a result, the vector potential A given by (3) shares these
properties. It follows that ∇ · B = 0 and ∇ × B = 0, and A
satisfies the Coulomb gauge condition, for any surface values
n · B and ψ, even if these values are noisy and the surface
integrals are only evaluated approximately. Furthermore,
Gn and Gt are analytic within the region of interest, and
convergent Taylor series for A about any point interior to V
may be obtained by expanding the integral kernels Gα in
the unprimed variables r.

EXTRACTING MAPS USING BMAP3D
Consider a bending magnet with large design-orbit sagitta,

and suppose that the values Bx , By , and Bz and ψ are pro-
vided on a 3D grid that lies within the magnet and extends
into the magnet fringe field regions. We surround the design
trajectory by a bent box with straight ends that encloses no
iron or other sources (Fig. 1). If the data B and ψ are inter-
polated onto the boundary of the box, the result (3) allows
one to construct a corresponding vector potential and its
Taylor coefficients about any point in the interior via sur-
face integrals, without the need for numerical differentiation.
Knowledge of these quantities allows one to construct the
Hamiltonian and its Taylor series near the design trajectory,
which are sufficient to compute a symplectic transfer map
through the magnet [9].
The code BMAP3D uses this technique to compute the

design orbit and an associated transfer map about this orbit
in Lie-algebraic form through third order for a given set of
data Bx , By , Bz and ψ on a regular Cartesian grid. The

x 

z 

y 

Figure 1: A bent box surrounding a reference trajectory
(red) through the magnetic field of a bending dipole. The
dots above and below the midplane illustrate the monopole
doublet used to generate the magnetic field described in (6).

equations of motion for the design trajectory are integrated
simultaneously with the equations for the Lie generators of
the nonlinear map [9] using the global Cartesian coordinate
system shown in Fig. 1, with z chosen as the independent
variable. At each numerical step in z, the code uses effi-
cient truncated power series algebra (TPSA) algorithms to
compute the Taylor coefficients of the integral kernels (4)
about the design point, which are used to extract the Taylor
coefficients of A (through degree 4) by surface integrals of
the form (3). In addition to the final transfer map, Taylor co-
efficients of A and B along the design trajectory are provided
as numerical output.

Each Taylor coefficient of the vector potential A at a fixed
value of z requires a single integration of the field and poten-
tial data over the surface S. Due to the computational cost
associated with the number of Taylor coefficients required,
the code has been parallelized using a domain decomposi-
tion by partitioning the surface of the bent box into disjoint
regions. During the surface integration required for a given
Taylor coefficient, integration over each region is performed
on a separate processor core. This parallelization allows a
large number of maps (∼100) to be computed from distinct
3D data sets within a reasonable time (∼hours), allowing for
statistical studies or optimization of magnet design.

Benchmarks
The code is benchmarked using an exactly-soluble

Maxwellian field that captures many features of a physical
dipole. Suppose two magnetic monopoles having strengths
±g are placed at the (x, y, z) locations

r+ = (0, a, 0), r− = (0,−a, 0). (5)

These monopoles generate a source-free magnetic field (∇×
B = 0 and ∇ · B = 0) away from the two points (5). The
field is given by B = ∇ψ with:

ψ(x, y, z) = ψ+(x, y, z) + ψ−(x, y, z) =

− g[x2 + (y − a)2 + z2]−1/2 + g[x2 + (y + a)2 + z2]−1/2.
(6)

In our test, a = 2.5 cm and g = 1 Tesla-(cm)2. We set
up a regular grid in x, y, z space, where x ∈ [−4.4, 4.4]
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with spacing hx = 0.1, y ∈ [−2.4, 2.4] with hy = 0.1, and
z ∈ [−300, 300] with hz = 0.125 (in units of cm). The
values of Bx , By , Bz , and ψ are computed and stored at each
grid point.
We choose an 8.65 MeV electron reference trajectory

that lies in the midplane, which makes a 30 degree bend
and passes directly through the midpoint joining the two
monopoles (Fig. 1). We surround this reference trajectory
by a bent box with height 4 cm and width 8 cm and a bending
angle of 30 degrees. (The length of the arc segment is 10 cm,
and the length of each straight leg is 3.054 m.) Using the
code BMAP3D, power series for the components of A and B
about each reference point rd are computed from grid data
and compared to the analytically known Taylor coefficients
of the field.
The computed vector potential is shown in Fig. 2, and

Fig. 3 illustrates the error in two third-order Taylor coeffi-
cients of the corresponding magnetic field. In each case, this
error is measured relative to the maximum value attained by
the coefficient along the reference trajectory. The increase
in error near the endpoints z = ±20 cm is due to the fact that
the contribution of the magnetic field and magnetic scalar
potential on the two end faces of the bent box have been omit-
ted, and this error can be reduced by allowing the straight
legs of the box to extend farther into the fringe field region.
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Figure 2: The vector potential for the monopole doublet
for the case a = 2.5 cm and g = 1 Tesla-(cm)2 at points
along the reference trajectory, shown as a function of the
longitudinal coordinate z. (Red) The component Ax . (Blue)
The component Az . Note that Ay = 0.

To benchmark the transfer map, a vector potential for the
monopole doublet can be explicitly constructed in one simple
gauge [5, 9]. Using this exactly-known vector potential, a
reference trajectory can be computed and the transfer map
determined using numerical integration of themap equations.
This map can then be compared to the map obtained using
the surface method just described. In this case, we find that
the relative difference in each coefficient of the third-order
transfer map is 10−4 or smaller.

Smoothing
The key feature of this technique is that results are rela-

tively insensitive to numerical errors (noise) in the under-
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!" #$" #!" %$"&!"&#$"&#!"&%$" $"

"#$&'"

"""#$&("

"""#$&!"

"""#$&)"

"""#$&*"

"""#$&+"

"""#$&,"

""#$&#$"

C
o
ef

fi
ci

en
t 

o
f 
x2
y 

in
 B
x 

(r
el

at
iv

e 
er

ro
r)

  
 

C
o
ef

fi
ci

en
t 

o
f 
y3

 i
n
 B
z 

(r
el

at
iv

e 
er

ro
r)

  
 

z (cm) 
!" #$" #!" %$"&!"&#$"&#!"&%$" $"

#$&'"

#$&("

#$&)"

#$&#$"

#$&#%"

#$&#'"

#$&#("

Figure 3: The error in the Taylor coefficients of the com-
puted magnetic field of the monopole doublet (6) for the case
a = 2.5 cm and g = 1 Tesla-(cm)2 is shown along the refer-
ence trajectory as a function of the longitudinal coordinate
z.

lying grid data. To examine the effect of numerical noise,
we generate random magnetic field errors ∆B and potential
errors ∆ψ at each grid point that are proportional, at the 1%
level, to the magnetic field B and scalar potential ψ of the
monopole doublet (6). At each mesh point (x j, yj, z j ) we
set:

∆Bx,y,z (x j, yj, z j ) = εBx,y,z (x j, yj, z j )δx,y,z ( j), (7a)
∆ψ(x j, yj, z j ) = εψ(x j, yj, z j )δψ ( j). (7b)

Here δx ( j), δy ( j), δz ( j), and δψ ( j) are uniformly dis-
tributed random variables taking values in the interval
[−1, 1], and ε = 0.01. Using the code BMAP3D, the val-
ues (7) are interpolated onto the surface of the bent box
described in the previous Section, and the vector potential
and its Taylor coefficients are computed about the reference
trajectory shown in Fig. 1. The resulting vector potential
components Ax and Az are shown in Fig. 4 for six distinct
random seeds (red). This procedure was performed for a
total of 160 random seeds, and the rms values of Ax and Az

at each value of z are shown in blue, indicating maximum
rms values that are 6 × 10−5 and 3 × 10−4 relative to the
maximum values of Ax and Az shown in Fig. 2. Thus, in
the case of the monopole doublet, random noise of order 1%
in the grid values produces a relative error in the computed
vector potential that is only of order 10−4 along the reference
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Figure 4: Vector potential components Ax and Az computed
from 1% random noise for the case a = 2.5 cm and g =

1Tesla-(cm)2. (Red) Results are shown for 6 distinct random
seeds. (Blue) The rms value as computed using 160 random
seeds.

trajectory. This is a result of numerical smoothing, by which
random errors in the values of the magnetic field and scalar
potential on the bent box surface are damped as one moves
inward toward the reference trajectory.

The same phenomenon also occurs for high-order Taylor
coefficients of the vector potential. As an example, one
fourth-degree Taylor coefficient for the vector potential of
the monopole doublet (6) is shown in the upper plot of Fig. 5.
The corresponding Taylor coefficient as computed from 1%
relative noise (7) is also shown, which attains a maximum
rms value that is 5 × 10−3 relative to the maximum value
appearing in the upper figure.

APPLICATION
As an application of this technique, we performed a

study of the 35-mm gap design of the Brookhaven NSLS-II
dipoles. The dipole is designed to provide 3 GeV electrons
with a bend of 6 degrees. Based on the use of Opera 3D,
Brookhaven provided data for both the field B and the scalar
potential ψ on a grid with

x ∈ [−0.06, 0.06], y ∈ [−0.016, 0.016], z ∈ [−1.8, 1.8]

and spacing
hx = hy = hz = .002.
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Figure 5: (Upper) The coefficient of the monomial y4 in the
Taylor series for Az computed for the monopole doublet (6)
for the case a = 2.5 cm and g = 1 Tesla-(cm)2. (Lower) The
same coefficient computed from 1% random noise. The blue
line denotes the rms value as computed using 160 random
seeds

Here all quantities are in meters.

The map computation in BMAP3Dwas performed using a
bent box with height 0.024 m and width 0.1 m. The length of
the arc segment was 3.22 m, and the length of each straight
leg was 0.1 m. For preliminary fitting, the box was taken to
be nearly straight (with a bending angle of 0.6 degrees). As
a numerical test, the interior magnetic field was computed
in BMAP3D (using B = ∇ × A) at several interior grid
point locations. This solution for the interior field, which is
obtained using only field and potential data on the surface
of the bent box, was then compared to the original data at
each grid point. Figure 6 displays the computed value of
the vertical field By off-axis at (x, y) = (0, 0.2) cm along
the length of the dipole. Note that the fitted field correctly
captures the fringe-field behavior, and the maximum error
obtained along the line shown was |Bdata − B f it |/|B|peak =
4 × 10−4.

As a second test, Fig. 7 shows the reference trajectory
through the dipole as computed using BMAP3D, together
with a reference trajectory that is computed using numerical
integration based on magnetic field data interpolated from
the grid. Using the numerically determined Taylor coeffi-
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cients of Ax , Ay , and Az , a transfer map was computed about
this reference trajectory through third order.

!"#$ %"!$ %"#$ &"!$'!"#$'%"!$'%"#$'&"!$

z (m) 
!$

  
  

  
  

 M
ag

n
et

ic
 f

ie
ld

 B
y
 (

T
) 

$!$

$'!"!#$

$'!"%$

$'!"%#$

$'!"&$

$'!"&#$

$'!"($

$'!"(#$

$'!")$

Figure 6: Fit obtained to proposed NSLS-II dipole vertical
field using the bent box of Fig. 1. The solid line is a linear
interpolation through numerical data provided by OPERA-
3d. Dots indicate values computed from surface data using
BMAP3D.
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Figure 7: Reference trajectory through the NSLS-II dipole
vertical field. (Solid) Reference trajectory computed by
BMAP3D using data on the surface of a bent box. (Dots) Ref-
erence trajectory computed by numerical integration through
magnetic field data on a mesh.

CONCLUSIONS
A parallel code BMAP3D has been developed for com-

puting third-order symplectic transfer maps based on 3-
dimensional magnetic field data on a grid, as provided by
various 3-D finite element field codes. The method involves
fitting field data onto a boundary surface and continuing
inward to obtain A and its Taylor coefficients in a neigh-
borhood of the beam design trajectory. If desired, the code
can produce both A and B at any interior point, together
with Taylor coefficients about this point through 4th and 3rd
order, respectively. These quantities can be exported for use
with other charged-particle optics codes. The surface-fitting
procedure has several distinct advantages:

• The method is based on a smooth (analytic) representa-
tion of the interior magnetic field that exactly satisfies
Maxwell’s equations. One may verify that ∇ · B = 0
and ∇ × B = 0 at each interior point to within machine
precision.

• The error is globally controlled. Each component Bx ,
By , and Bz of both the exact and computed fields sat-
isfies the Laplace equation. Therefore their difference,
the error field, also satisfies the Laplace equation, and
must take its extrema on the boundary. The fitting error
on the boundary is controlled, and the interior error
must therefore be even smaller.

• Interior values inferred from surface data are relatively
insensitive to errors/noise in the surface data. In gen-
eral, the sensitivity to noise in the data decreases rapidly
(as some high inverse power of distance) with increas-
ing distance from the surface, and this property im-
proves the accuracy of the high-order interior deriva-
tives needed to compute high-order transfer maps.

• Unlike a truncated Taylor map, the computed transfer
map in factorized Lie form is exactly symplectic [9].

Using tools such as BMAP3D and those described in [1]-
[4], one may obtain a realistic high-order transfer map for an
entire accelerator or storage ring without the uncertainties
associated with the use of only approximate field models.
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