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Abstract
In extremely high energy circular lepton collider correct

consideration of synchrotron radiation (SR) is important for
beam dynamics simulation. We developed fast, precise and
effective method to track the paricles in the lattice (includ-
ing nonlinearities) when the radiation effects — classical
damping and quantum emittance excitation— are distributed
along the beam orbit. As an example we study beam dy-
namics in the FCC-ee lepton collider which is now under
development at CERN [1]. Radiation effect on beam optics,
dynamic aperture and momentum acceptance is discussed.

CONCENTRATED SR
Usual way to simulate SR in a circular lattice is to apply

the following transformation to the coordinates of all parti-
cles once per turn at arbitrary azimuth s0 [2] (the formulae
are simplified for the case of flat lattice without betatron
coupling)

x 7→ ax (x − ηxδ) + ηxδ + bx r̂1
px 7→ ax (px − η ′xδ) + η ′xδ + bx (r̂2 − αx r̂1)/βx
y 7→ ay y + by r̂3
py 7→ aypy + by (r̂4 − αy r̂3)/βy

δ = ∆E/E0 7→ e−
T0

2τδ δ + σδ

√
1 − e−

T0
τδ r̂5

, (1)

where

au = e−
T0

2τu , bu =

√
εu βu

(
1 − e−

T0
τu

)
,

E0 — reference energy, T0 — revolution period, τu —damp-
ing times (u = x, y), εu — emittances, βu , αu , ηx , η ′x —
optical functions at s0, and r̂1 . . . r̂5 — random values with
standard distribution.

DISTRIBUTED SR
If the energy loss per turn is very large, then the technique

described above may provide erroneous results. So, we
developed an algorithm, which takes into account realistic
distribution of SR along the lattice.

Radiated Energy
In a dipole magnet of the length L and bending angle θ an

electron with relativistic factor γ follows an arc with radius
ρ = L/θ and radiates amount of energy equal to

W0 =
2θe2

3ρ
γ4 .

Spectral power density is the following

dW
dω
=

W0
ωc

S
(
ω

ωc

)
, where ωc =

3c
2ρ
γ3 ,

or
dW
dy
=

W0
y

S(y) , where y =
ω

ωc
.

S(y) is so called spectral function

S(y) =
9
√

3
8π

y

∫ ∞

y

K5/3(t)dt .

Then spectral photon density can be written as follows

s(y) =
dN
dy
=

1
y

S(y) .

Mean number of photons emitted during single passage
through the magnet is

N̄ =
W0
~ωc

∫ ∞

0
s(y)dy =

5
√

3
6

αγθ ,

where α is the fine structure constant. Then average photon
energy is

Ē =
W0

N̄
=

4
√

3
15
oe
ρ

Eeγ
3 ,

where Ee is the electron rest energy, oe is the reduced elec-
tron wavelength.
All radiation acts are independent, hence the number of

actually emitted photons N has Poisson distribution with the
parameter N̄ . To obtain energy of the i-th photon one should
generate random value yi with the following distribution
density function

f (yi) =
3

5π

∫ ∞

yi

K5/3(t)dt , (2)

where K is a modified Bessel function of the second kind.
Such a distribution will be referred to as SR-distribution,
notation yi ∈ SR means that yi obeys this distribution (a
method for generation of this distribution will be described
in the next subsection). After emission of the i-th photon
coordinate δ is changed by

∆iδ = −
3oe
2ρ

γ3

γ0
yi , i = 1 . . . N ,

where γ0 is the relativistic factor of the reference particle. It
should be noted that

γ

ρ
=

e
Ee

B , γ = γ0 (1 + δ) ,
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where B is on-axis magnetic field. Then

N̄ =
5
√

3
6

αe
Ee

BL , ∆iδ = −
3
2

eoe
Ee

γ0B(1 + δ)2yi . (3)

Particle’s path in the bending magnet depends on its initial
horizontal coordinate x0 (at the entrance pole face) and pole
face rotation angles. If the magnet has quadrupole field of
strength k1 =

1
Bρ

∂B
∂x , then off-axis particles travel in different

magnetic field. To take these effects into account we make
the following substitutions in (3)

B 7→ B (1 + k1ρx0) ,
L 7→ L (1 + x0/ρ) − x0(tan ϕ1 + tan ϕ2) ,

where ϕ1, ϕ2 are the rotation angles for the entrance and exit
pole face of the dipole. We should also substitute δ in (3)
by its value δ0 at the entrance pole. Finally

N̄ =
5
√

3
6

αθγ0 (1 + k1ρx0)
(
1 + h∗x0

)
,

∆iδ = −
3oe
2ρ

γ0
2 (1 + δ0)2 (1 + k1ρx0) yi ,

where
h∗ =

1
ρ
−

tan ϕ1 + tan ϕ2
L

.

Generation of SR-Distribution
Given the distribution density (2) and the integral repre-

sentation of K-function

Kν (z) =
∫ ∞

0
e−z cosh t cosh(νt)dt , Re (z) > 0 ,

we can find distribution function of SR-distribution

F (z) = 1 −
3

5π

∫ ∞

0

cosh
(

5
3 t

)
cosh2 t

e−z cosh tdt .

y ∈ SR can be generated using inversion method [3], its
main idea is the following: if ξ has uniform distribution over
[0; 1] segment, then F−1(ξ) ∈ SR. We will use analytical
approximation of F−1(ξ), which will be denoted as F̃−1(ξ).
Its asymptotics should be the same as for F−1(ξ). Given
asymptotics for F (z)

F (z) −−−→
z→0

const · z1/3 , F (z) −−−−→
z→∞

const ·
e−z
√

z
,

we may take the following expression for F̃−1(ξ)

F̃−1(ξ) = C
(
− ln

(
1 − ξa

))3/a .

So, instead of y wewill generate ỹ, which has the distribution
function F̃ (z). Thus F̃ (z) should be close to F (z), this can
be achieved by appropriate choice of C and a values. Let
the first two moments of y be the same as for ỹ. Also we
have an expression for the n-th distribution moment〈

yn
〉
=

∫ 1

0

(
F−1(ξ)

)n
dξ

Table 1: Relative Deviation of the First Four Moments of
Energy Distribution from Theoretical Value 〈yn〉 for the
simulation Techniques Proposed in the Present Paper (

〈
ỹn

〉
)

and the One Proposed in [5] (〈yt n〉).

n 〈yn〉 ∆
〈
ỹn

〉
,% ∆ 〈yt

n〉 ,%
1 8

√
3/45 −3 · 10−8 −6 · 10−5

2 11/27 1 · 10−7 −0.5
3 224

√
3/405 1.56 −1.8

4 1309/405 4.83 −5.1

and similar expression for
〈
ỹn

〉
. Using computer algebra

system Maple 9.5 [4], we obtain C = 0.5770253543282,
a = 2.535608814842.
Two another techniques for SR-distribution generation

were proposed in [5]. The first of them also involves in-
version method, but its accuracy is poor because F (z) is
approximated with an inversible function instead of direct
approximation of F−1(ξ). The second one involves lookup
table and has much better accuracy. Let 〈yt n〉 be the values
of the first four distribution moments for the lookup table
method from [5]. Table 1 summarizes relative deviations for〈
ỹn

〉
and 〈yt n〉 from theoretical values 〈yn〉. So, our method

is significantly more accurate. From now on we will assume
that F̃ (z) ≡ F (z) and ỹ ≡ y.

Transversal Motion
Energy deviation due to SR photons emission affects par-

ticle’s motion in the bending plane. In a flat lattice all bends
are horizontal, hence x and px are to be changed along with δ.
Radiation damping in the magnet in both transversal planes
is proportional to the magnet’s contribution to I2 integral,
squared quantum exitation amplitude is proportional to the
contribution to I5x . Equilibrium distribution of the horizon-
tal coordinates is gaussian, so we can apply transformations
(1) to x and px in each bending magnet separately, assuming
that the addition due to quantum exitation in each magnet
is also gaussian. So, all radiation acts in the magnet can be
simulated at once at its exit pole face. Finally, the following
transformation should be applied to the coordinates of each
particle after tracking through each bending magnet

x 7→ ec1x∆δ (x − ηxδ) + ηx (δ + ∆δ) + c2x r̂1
√
∆2δ ,

px 7→ ec1x∆δ (px − η ′xδ) + η ′x (δ + ∆δ) + c2x
r̂2−αx r̂1
βx

√
∆2δ ,

y 7→ ec1y∆δ y , py 7→ eay∆δpy , δ 7→ δ + ∆δ ,
(4)

where

∆δ =
∑N

i=1 ∆iδ , ∆2δ =
∑N

i=1 (∆iδ)2 ,

c1x,1y =
3T0

2τx,yreγ03I2
,

c2x =

√
24
√

3
55

εx βx 〈Hx〉

αγ05oe2I5x

(
1 − e−

T0
τx

)
,

I2, I5x — radiation integrals, 〈Hx〉— horizontal dispersion
invariant averaged over the magnet, βx , αx , ηx , η ′x — hor-
izontal optical functions at the exit pole of the magnet, r̂1,
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r̂2 — random values with standard distribution. Quantum
excitation in the vertical plane can be simulated once per
turn, as in (1).

SAWTOOTH EFFECT AND TAPERING
Distributed energy losses lead to variation of equilib-

rium beam energy 〈δ〉 along the lattice: it drops in bending
magnets and rises in RF cavities. This is so called saw-
tooth effect, which also leads to the closed orbit distortions,
∆xco ≈ ηx 〈δ〉, therefore, reference particle becames off-
axis in quadrupoles and higher multipoles. So, in high
energy rings all the optics will be completely distorted, dy-
namic aperture and energy acceptance will drop significantly
due to sawtooth effect. It can be cured by a variation of mag-
netic field in beamline elements in proportion to varying
equilibrium energy (magnet tapering). To make optics in
tapered and original lattice as close as possible, one should
change steering field and multipole gradients in each beam-
line element in proportion to (1 + 〈δ〉). Then, to take into
account the effect of the dipoles on the closed orbit, the fol-
lowing transformation should be applied to the horizontal
coordinates after each dipole

x 7→ x + ρ(1 − cos θ) ∆〈δ〉 ,
px 7→ px + sin θ ∆〈δ〉 ,

where ∆〈δ〉 = W0/E0 is the variation of equilibrium energy
in the dipole.

SR FROM QUADRUPOLES
Particle follows curved trajectory and therefore emits SR

photons not only in dipoles but also in other beamline ele-
ments. Additional energy loss due to this effect, averaged
over beam particles, is small compared to total losses even
for high energy rings. Hence radiation integrals and beam
sizes stay unchanged, but coordinate dependent losses, es-
pecially in strong final focus quadrupoles, distort optics for
particles with large amplitudes, which leads to decrease in
dynamic aperture [6].

The simpliest way to study this effect is to consider each
strong quadrupole as a “variable strength dipole” with par-
allel pole faces and no quadrupole gradient. This fictitious
dipole acts in both transversal planes and has different bend-
ing angle and radius of curvature each turn for each particle.
These values will be different for horizontal and vertical
planes

θx = |px1 − px0 | , θy =
���py1 − py0

��� , ρx,y = L/θx,y ,

where px0, py0 are the transversal momenta at the entrance
pole face, px1, py1 are the transversal momenta at the exit
pole face of the quadrupole. So, radiation in both transversal
planes should be simulated independently

N̄x,y =
5
√

3
6

αθx,yγ0 , Nx,y ∈ Poisson
(
N̄x,y

)
,

(∆iδ)x,y = −
3oe

2ρx,y
γ0

2 (1 + δ0)2 yi , i = 1 . . . Nx,y ,

∆δ =
∑Nx

i=1 (∆iδ)x +
∑Ny

i=1 (∆iδ)y ,

∆2δ =
∑Nx

i=1 ((∆iδ)x )2 +
∑Ny

i=1

(
(∆iδ)y

)2
.

Then the transformation (4) should be applied.

SIMULATION RESULTS FOR FCC-ee
The simulation technique described above was imple-

mented as part of TrackKing simulation program [7]. N-turn
DA at the given azimuth is defined as 3D region in (x, y, δ)
coordinates visited by particles, which survived N turns of
tracking. Initial particle distribution is uniform over these 3
coordinates with other 3 zeroed and wide enough to span the
whole stability region. DA can be plotted as 3 projections
of this region.
FCC-ee is 100 km e+e- collider with beam energy 45–

175 GeV. Simulations were performed for preliminary ver-
sion of 175 GeV FCC-ee lattice with 4 different algorithms:
without SR; with concentrated SR; with distributed SR and
tapering; with distributed SR, tapering and SR from final
focus quadrupoles. DA borders (in units of beam sizes) are
shown in Fig. 1.

Figure 1: 500-turns DA of 175 GeV FCC-ee lattice.

Introducing SR into simulations increases energy accep-
tance considerably and also increases transversal DA slightly.
At this point concentrated and distributed algorithms of SR
simulation give similar results, but vertical DA decreases
dramatically, when SR from quadrupoles is added (only
distributed algorithm has this option). Further studies are
required to explain the results correctly.

CONCLUSION
Dynamic aperture and energy acceptance of FCC-ee de-

pends strongly on the choice of SR simulation technique,
so, the most realistic one should be taken. The method de-
scribed in this paper includes simulation of radiation damp-
ing and quantum excitation in longitudinal and both transver-
sal planes. It contains procedure for precise generation of
SR photons spectrum and takes into account realistic dis-
tribution of emission points along the lattice. The only as-
sumption is that the addition to horizontal coordinates due
to quantum excitation has gaussian distribution in each bend-
ing magnet. The important advantage of this method is the
possibility of simulating SR from quadrupoles and studying
of the magnet tapering options.
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