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Abstract 
Paradigm complementary to conventional betatron 

matching is explored, with matching distributed over the 
entire line.  This can have varying degrees of advantage 
over a conventional scheme. 

In conjunction, a matching algorithm was developed for 
any line configuration, coupled 4D included, giving 
deterministic, rigorous optimal solutions spanning entire 
tradeoff curve between mismatch and quad strength, thus 
allowing insight and control pre-implementation. It also 
shows promise of attaining global optimum.  Combined 
with distributed matching this algorithm displays further 
advantages of speed, determinism and flexibility. 

DISTRIBUTED MATCHING AND 
INTERPOLATED SOLUTION 

Matching either beam ellipse or optical transport to 
design, in either XY coupled or uncoupled environments, 
has been one of the most important accelerator operation 
topics inspiring constant algorithmic investigation [1]. A 
configuration premise common to all these approaches is 
that the matching occurs locally, within a dedicated 
matching section of quadrupoles and skew quadrupoles.  
The current report aims to free the control paradigm from 
this premise and develop a supporting algorithm to enable 
this paradigm shift.  Its implication can extend beyond 
matching. 

Distributed vs Local Matching Configuration 
Control of accelerator and beam properties follows two 

distinct paradigms in terms of geometrical configuration: 
Distributed and Localized.  These two paradigms are 
often characterized and justified by cost vs performance. 
Localized Control 
• Limited/Costly/Bulky hardware (monitor and actuator) 
• Little chance of cumulative/compounded error  
• Damage mostly confined to local areas 
• Example: Dispersion, Bunch length, Energy Spread 
Distributed Control 
• More affordable and compact monitors and actuators 
• Errors accumulate & compound throughout entire line 
• Damage arises everywhere and is irreversible 
• Example: Transverse orbit 
 

Transverse matching shares almost all characteristics 
with parameters controlled in a distributed scheme, given 
the following features of modern accelerator systems: 
• Beam profile diagnostics often form adequate coverage 

throughout a beam line. 
• Even more dense BPM coverage has been exploited to 

provide AC or DC measurements of optical transport in 
accelerators [2]. 

• Quadrupoles, the actuators for matching, typically far 
outnumber orbit correctors. 

• Beam and optical mismatch is not a local problem.  It 
emerges and compounds at all locations and from all 
sources, and its adverse effects impact all sections of a 
beam line. 

 
Figure 1: Projected Emittance for Various Initial 
Mismatch Propagated through 5 Pass CEBAF 

Of the last point, cumulative mismatch not only results 
in excessive beam envelope and tail, it can cause more 
subtle damages as shown in Figure 1 [3], in which are 
plotted evolution paths of beam projected emittance in the 
Jefferson Lab CEBAF accelerator under different 
mismatch parameters (CS), with CS=1 for completely 
matched beam.  Due to slight un-cancelled skew quad 
terms in the linac HOM couplers, the projected emittance 
inevitably grows.  However this growth can be kept under 
control with a globally matched beam (CS=1).  Once the 
projected emittance grows out of bound, no amount of 
quadrupole matching can bring it down.  Other factors 
that can be exacerbated by mismatch include geometrical 
aberrations, nonlinear dispersive effects such as T512, etc. 

The reason for matching to become a localized control 
process, apart from specific functionality concerns, may 
be that historically anything less than fully matched optics 
out of a matching process is considered unacceptable, 
with no systematic procedure to evaluate its consequence 
or identify the follow-up action.  Thus the problem is 
resolved by designed-in sections that must achieve 100% 
matching within themselves, and nowhere else.  The 
following issues can arise with this paradigm: 
• Design flexibility is limited by matching sections 
• Cumulative mismatch causes problem everywhere, but 

is addressed only near matching sections. 
• Cumulative mismatch causes excessive quad strengths. 
• Excessive matching quad strengths cause local blowup. 
• With all matching concentrated in localized places, 

there is no recourse if the solution fails. 
A side product of the localized matching paradigm is 

often a black box optimization engine responsible for 
matching the beam or optics to 100%.  Depending on the 
engine, further issues can be introduced:   
• (Beam) time consuming 
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• Unpredictable/Inconsistent outcome 
• Lack of option/insight/control on the user’s part 

By allowing the possibility of partial matching spread 
over the entire beam line, coupled to an interpolation 
scheme that does away with inefficiency and uncertainty, 
a distributed matching scheme may prove competitive 
where the above issues are acute, and it also leads to a 
rigorous and deterministic matching algorithm with 
physically consistent and unambiguous interpretation.  

Segmentation of Matching Sections 
In a distributed matching scheme the entire beam line is 

segmented into sections, all contributing to the reduction 
of mismatch in an adiabatic manner.  The segmentation is 
flexible and the sections need not be contiguous.  Any 
special-purpose modules, such as RF or dispersion 
suppressor, can be either left out or embedded inside a 
matching section, as indicated in Figure 2. 

 
Figure 2: Concept of distributed matching.  Top to 
bottom: (a) Localized matching (b) Segmentation into 
distributed matching sections, (c) Special modules left 
out, (d) Special modules embedded, (e) Adiabatic 
reduction of mismatch Φ by partially matching to design 
beam covariance ΣD at end of each section.  

Interpolation Scheme 
The design twiss ΣD at end of each section in Fig. 2 is a 

constant. This begs the question of why matching has to 
be done repeatedly, and likely haphazardly, by a black 
box engine using beam time. Thus we look into 
implementing the distributed matching scheme via 
interpolation on pre-calculated partial matching solutions 
for each section.  This has the following advantages: 
• Speed: No online optimization needed 
• Determinism: Best solution worked out  a  priori 
• Flexibility/Controllability: User options on matching 

scenario such as profile of tapering mismatch Φ  
• Insight into the problem can be gained given a 

competent offline process. 
A competent algorithm will be introduced later in the 

note. But firstly this concept using a more naïve algorithm 
is demonstrated in Figure 3 for a FODO lattice with 120° 
phase advance. Each matching section contains 3 quads. 
With initial mismatch factor as high as 9, in 7 sections the 
beam is totally matched. Due to the large phase advance 
between quads, this process is not overly demanding 
numerically. 

 
Figure 3: Applying distributed matching to a 120° lattice. 
Initial mismatch of Φ=9 in both X & Y is launched into 
the line, with mismatch angle Θ covering entire range of 0 
to π. The color sheets represent the evolution of ΦX/Y at 
all initial Θ X/Y through 7 distributed matching sections. 
Solution at each section is interpolated from offline table. 

RIGOROUS DETERMINISTIC 
MATCHING ALGORITHM 

Trade-off Between Objective and Constraint 
By allowing the possibility of partial matching solutions 

we have the opportunity of rigorously examine the 
interplay between matching objective and other factors 
limiting it.  The canonical approach for studying this 
interplay is that due to Lagrange ൜		ܨ׏ = 	 ∙ ܪܪ׏ = ݄ →			݇ଵை, ݇ଶை, ݇ଷை,… ݇ேை,ை → ܨ		 = ݂ሺ݄ሻ 
where an objective function F of km to be optimized is 
subject to constraint function H of the same km.  The 
solution is obtained by imposing the tangency condition 
with an arbitrary variable λ, and specifying the particular 
value of H=h.  This amounts to asking what the optimal 
value is for F as a function of h.  By scanning over h we 
get a complete picture of the objective F played against 
the constraint H in a locally optimal sense everywhere.  
Equivalently, one can scan f, or even λ, to get an 
alternative view of the same trade-off [4]. ൜		ܨ׏ = 	 ∙ ܨܪ׏ = ݂ →			݇ଵை, ݇ଶை, ݇ଷை,… ݇ேை,ை → ܪ		 = ݄ሺ݂ሻ 

ܨ׏   = 	 ∙ 	ܪ׏ → 				 	݇ଵை, ݇ଶை, ݇ଷை,… ݇ேை 	→ 		 ൜	ܨ = ݂ሺሻܪ = ݄ሺሻ 
The three formulations above for mapping out trade-off 
between objective and constraint can be shown to lead to 
differential relations between the optimal solution ࢑ = ሺ݇ଵை, ݇ଶை …݇ேைሻ	and f, h or λ: 
 ݀࢑݂݀ฬ = 1


∙ ଵିࡹ ∙ ࢀࡾࡾ ∙ ଵିࡹ ∙ ࡾ = 1


∙ ሻࡹሺ݆݀ܣ ∙ ࢀࡾࡾ ∙ ሻࡹሺ݆݀ܣ ∙ ࢑݄݀ฬ݀	ࡾ = ଵିࡹ ∙ ࢀࡾࡾ ∙ ଵିࡹ ∙ ࡾ = ሻࡹሺ݆݀ܣ ∙ ࢀࡾࡾ ∙ ሻࡹሺ݆݀ܣ ∙ ࢑݀ฬ݀ ࡾ = ଵିࡹ ∙ ࢑			,ࡾ = ൫݇ଵைሺሻ, ݇ଶைሺሻ, … ݇ேைሺሻ൯			࢐࢏ࡹ = ߲ଶሺܨሺ࢑ሻ −  ∙ ሺ࢑ሻሻ߲݇௜߲ܪ ௝݇ ࢏ࡾ			, = ࢏ሺ࢑ሻ߲݇ܪ߲	 ሻࡹሺ݆݀ܣ  = ࢀሻࡹሺ݂݋ܥ = ሻࡹሺݐ݁ܦ ∙  ଵିࡹ

where the vertical bar limits the derivative to be taken 
only along the 1-dimensional curve of optimal tradeoff.  
The above formulas in principle make possible a 

Λ

Θ

Normalized 
phase space
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deterministic program of integration from optimal 
constraint to optimal objective and vice versa, including 
all optimal tradeoff solutions in between.  Of the 3 
differential relations, the one w.r.t. λ is most crucial:  
• This formulation has universal starting (-∞) and ending 

(0) values for λ, independent of problem detail, thus 
giving unequivocal start and end points of the process. 

• Integration over f and h alone will encounter 
singularities (ࢀࡾ ∙ ሻࡹሺ݆݀ܣ ∙  that can be resolved (0= ࡾ
only by complementary process over λ at these points. 

Betatron Matching Algorithm 
For the most generic 4D betatron matching problem 

under constraint of minimal RMS deviation of NQ 
quadrupole strengths from design, we take  ܨ = 14 ݎܶ	 ቀ஽ିଵ ∙ ሺ݇௠ሻܯ ∙ ோ ∙ ݉	ሺ݇௠ሻቁ்ܯ = 1, 2, … ொܰ	

௜௝ = 1݊෍ݔ௞௜௡
௞ୀଵ ∙ ,݅				௞௝ݔ ݆ = 1,2,3,4 

ܪ = ෍ሺ݇௠ோ − ݇௠஽ ሻଶேೂ
௠ୀଵ =෍݇ߜ௠ଶேೂ

௞ୀଵ  

where ΣD and ΣR are the design and real beam covariance 
and M the transfer matrix of the NQ quad section.  F can 
be regarded as a 4D extension of the 2D mismatch factor. 
The generic formulation allows using other performance 
objectives and constraints, although the example above is 
very well behaved even for very difficult optics. Figure 4 
shows a representative case where the entire tradeoff is 
mapped out for a 6 quad, 30° per cell FODO lattice. This 
is a much more difficult problem numerically than the 
120° case numerically due to low phase advance. 
Robustness and ability to reach the final optimum of the 
algorithm are explained in the caption. The true power of 
this algorithm is revealed in Figure 5 showing the same 
solution plotted in the h−f plane. While a typical local 
optimization algorithm might have stopped at f=1.00013 
(C2 of Fig. 4) and declared success, it is clear from the 
current algoithm that the optimization as not stopped until 
λ=0, and we are rewarded with a much lower RMS quad 
strength. This characteristic property of the algorithm 
allows us to extract a simple subset of the complex 
solution path that corresponds to the “global” optimum 
for both objective and constraint, as shown in Fig. 5. 

Additional tests of the algorithm, including restoring 
transport error causing mismatch factor up to several 
1000 further demonstrate its robustness, self-consistency, 
and very low demand for human intervention in terms of 
fine tuning run parameters, an important feature if this 
algorithm is to be used for generating massive inter-
polation tables. We are also looking into expanding the 
repertoire of objectives and constraints, to functions such 
as weighted mismatch factor, weighted or absolute quad 
RMS, phase advance, matrix elements, etc. Even if the 
optima for these functions are not known a priori, the 
algorithm introduced here can take advantage of the 

known trivial optimum for H, at	݇ߜ௠ = 0, to integrate to 
the optima at either the new objective or constraint [4]. 

so 

 1 2 

A

B

 

C

 
Figure 4: Entire solution path in the λ−f plane for a 6-
quad 30° per cell FODO lattice, zoomed at different 
locations.  A1: Global solution path starting at (f=2.5, λ
→ −∞), ending at (f=1, λ=0).  A2: Zoomed in for detail 
toward the end.  B1: Further zoom.  B2: Near the point 
λ=0 and f =1: The path first approaches absolute optimum 
near f=1.0076, then at f=1.00013 (!), then executing a 
loop all the way down to f=1.14 before turning around 
and reaching the true f=1 point, shown by the red line on 
the extreme left..  C1: Zoom in around f=1.0076, the turn-
around on the right in B2.  C2: Zoom in around 
f=1.00013, the turn-around on the left in B2. 

Figure 5: Left: Solution path in the h−f plane roughly 
corresponding to B1 in Figure 4.  By insisting on not 
stopping at f=1.00013 and press on to λ=0, we reached 
the true `global` optimum with a much lower RMS quad 
strength.  This illustrates how a globally optimal tradeoff 
curve can be extracted by joining the red section with the 
magenta section at the intersection (blue circle), and 
discard everything above and to the right. 
Right: Examples showing two quadrupole k vs f plots 
with the path of globally optimal tradeoff indicated by 
gold arrows.  Start with the red curve, then jump to the 
magenta curve at f(CS)=1.02, the blue circle location on 
the left plot.  The fact that λ is negative everywhere 
makes this process unambiguous for both f and h.
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