
Figure 1: Final longitudinal phase space without (blue) 
and with longitudinal space-charge and CSR effects 
(green and red). 
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Abstract 

Next generation light sources are critical to scientific 
discovery in numerous fields such as materials science, 
chemistry, and the biosciences. In this paper, we will 
review status of accelerator modeling of next generation 
light sources and report on the progress that we have 
made in developing advanced computational tools for 
high fidelity start-to-end simulation and optimization of 
these sources.  We will present numerical methods and 
application examples for modeling of a next generation 
FEL-based light source. 

INTRODUCTION 
Next generation high brightness FEL X-ray light 

sources provide great opportunity for scientific discovery 
in many fields. Some grand challenges in basic energy 
science research involve controlling material processes at 
the electron level, designing energy efficient synthesis of 
new matter with desired properties, understanding the 
effects of complex correlation between the atomic and the 
electronic constituents on matter properties, mastering 
energy and information on the nanoscale, and characteriz-
ing and controlling matter away or far away from equilib-
rium [1]. To meet those challenges, one needs ultrafast, 
ultrabright, tunable X-ray light sources. A next generation 
FEL-based X-ray light source with its high spatial and 
temporal coherence provides many orders of magnitude 
higher peak brightness than a conventional third genera-
tion light source. A number of next generation FELs were 
built and are under construction or design. The perfor-
mance of those next generation light sources depends 
critically on the quality of the electron beam entering the 
radiation undulator. However, the presence of collective 
effects (space-charge, coherent synchrotron radiation 
(CSR), structure and resistive wakefields) inside the beam 
can significantly degrade the beam quality.  Figure 1 
shows the longitudinal phase space distribution of an 
electron beam at the entrance to an undulator with and 
without space-charge and CSR effects. It is seen that the 
presence of those collective effects causes large phase 
space modulation, increases energy spread and signifi-
cantly degrades the beam quality. Advanced computa-
tional methods are needed in order to accurately model 
those effects. 

ADVANCED COMPUTATIONAL METH-
ODS 

The simulation of a next generation light source starts 
with an initial particle distribution behind the cathode. In 
this study, we developed a second-order computational 

model to simulate the generation of photo-electrons from 
a photo-cathode driven by an external laser. For a given 
laser temporal pulse distribution and spatial distribution, a 
number of electrons carrying the total emitted charge are 
generated behind the cathode with the same transverse 
distribution as the laser’s and the same longitudinal dis-
tribution as the laser’s temporal profile times a reference 
longitudinal velocity v0. Those electrons are moved out-
side the photocathode using N time steps. Here, the time 
step size is t = tlaser/N, where tlaser is the total laser pulse 
length. Figure 2 shows a schematic plot of the emission 
process in the simulation. In the second-order photo-
electron emission model, the positions and the velocities 
of an electron after emission are given by 

                        (1) 
where t= z/v0, z is the electron longitudinal coordinate 
out of the photocathode right after emission during the 
time step t, and a is the acceleration that can be calculat-
ed using the field at the photo-cathode surface. As a com-
parison, we generate 300 pC photo electrons from a pho-
to-injector gun using the second-order emission model 
and the first-order emission model (without including 
acceleration). The current profile of the beam shortly after 
emission is shown in Fig. 3 using different numbers of 
emission steps in the above emission models. It is seen 
that the crude first order emission model can introduce 
artificial modulation of the beam. A much larger number 
of emission steps (a factor of 4) i.e. smaller emission step 
size, are needed in order to achieve the same level 
smoothness of the current profile. 

 ___________________________________________  
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Figure 2: A schematic plot of the electron emission pro-
cess at the photocathode. 

 

 
Figure 3: A section of current profile of the beam after 
emission using the second-order emission model (red) and 
the first-order emission model with different numbers of 
emission steps. 

 
     Efficient methods to calculate 3D space-charge effects, 
1D longitudinal CSR effects, structure and resistive wall 
wakefields were developed in past studies [2,3,4]. How-
ever, a brute force approach to resolve the fine structure 
microbunching below optical wavelength throughout the 
entire electron beam can be computationally expensive. A 
multi-level Poisson solver with adaptive mesh refinement 
in selected regions of the beam will be more efficient. An 
illustration plot of this method with three levels of re-
finement in the longitudinal direction is shown in Fig. 4. 
In the multi-level solver, the potential on a grid i at level n 
is given as 
 
 
 
where mesh(n-1) denotes the mesh grid on level n-1, 
mesh(n)(n-1) denotes the mesh grid at level n also belong-
ing to level n-1, and mesh(n) denotes the mesh grid on 
level n. For n less than or equal to 1, the Green function G 
is 0. In the above equation, the first two terms correspond 
to the long-range forces contributed by electrons on the 
parent grid level n-1. The third term denotes the short-
range force on the child grid level n. For the open bound-
ary condition assumed here, each convolution in the 
above equation can be computed by using an FFT-based 
method after zero padding. This results in a computational 
complexity of O(Nlog(N)), where N is the number of 
mesh grid points at each level. In the multi-level particle-
mesh method, the convolution at child mesh grid level n 
can be further decomposed into the summation of a long-
range force at level n and a short-range force at level n+1 
in a selected domain. Such a decomposition process can 
be repeated for many levels until the desired resolution is 

achieved in the desired region. The field for particles 
located inside the computational domain at level n is 
equal to the summation of field values interpolated from 
this level and the levels below the level n. 

 
Figure 4: An illustration plot of multi-level particle mesh 
refinement. 

  
Figure 5: Relative electric potential errors across the 
beam using direct Poisson solver (red) and the multi-level 
Poisson solver (green and blue). 

As a test, we calculated the electric potential in the 
middle of a beam with the direct Poisson solver and the 
above new multi-level Poisson solver. The relative errors 
of the solution from both methods are given in Fig. 5. It is 
seen that the new multi-level Poisson solver results in 
about a factor of four less errors in comparison to the 
direct solver. Such a multi-level Poisson solver with high 
accuracy in the selected region can significantly save the 
computational time in the simulation. 

Numerical integration is used to advance the particle 
spatial and momentum coordinates with given space-
charge and external fields. A widely used numerical inte-
grator in the literature is the so-called Boris integrator [5]. 
The Boris integrator has 2nd order numerical accuracy 
and works well at lower energy when the relativistic fac-
tor  is small. As the electron beam energy increases, 
there is a strong cancellation between the electric space-
charge force and the magnetic space-charge force in the 
laboratory frame. In the case of a large  factor for a rela-
tivistic electron beam, the numerical errors in computing 
the cancellation between the electric space-charge force 
and the magnetic space-charge force using the Boris inte-
grator become worse due to the fact that the magnetic 
force and the electric force are not calculated in the same 
time step. In the limit as  goes to infinity, the Boris inte-
grator requires that both the magnetic field and the elec-
tric field disappear with any given time step size, which is 
unphysical. Here, we developed a new numerical integra-
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tor that has 2nd-order numerical accuracy but works cor-
rectly for the relativistic electron beam. The one step 
update in particle coordinates for the new numerical inte-
grator is given as: 

 
The new numerical integrator computes the electric force 
and the magnetic force in the same time step and correctly 
handles the cancellation of the two forces in the laborato-
ry frame. As a test example, we simulated a 1 nC, 
250 MeV bunch that is spherical in the beam frame and 
that freely expands in vacuum. Due to the symmetry of 
the space-charge forces in the beam frame, the beam 
should stay spherical. Figure 6 shows the evolution of the 
horizontal, vertical and longitudinal rms sizes in the beam 
frame from the simulation using the Boris integrator and 
the new proposed integrator with the same time step size. 
It is seen that the Boris integrator gives a wrong predic-
tion of the transverse X and Y sizes while the new algo-
rithm correctly predicts the rms size evolution. 

 

 
Figure 6: Transverse and longitudinal rms sizes evolution 
from the Boris integrator (top) and from the new integra-
tor (bottom) in a freely expanding sphere beam.  

APPLICATIONS* 
   The advanced computational tools developed here 

were implemented into a parallel 3D particle-in-cell track-
ing code suite, IMPACT [2, 6, 7]. IMPACT has become 
an essential tool for the design of the LCLS-II [8], and in 
particular for the investigation of the microbunching in-
stability [9]. As a way to illustrate the code capabilities, 
we briefly discuss the application of the IMPACT to a 
specific problem of LCLS-II lattice-design optimization. 

Figure 7 shows a schematic layout of the LCLS-II 
beam delivery system [10]. The combination of the long 

(>2 km) transport beam line following the L3-Linac and 
leading to the FEL undulators, the presence of several 
doglegs, and a relatively low electron-beam energy 
(4 GeV), aggravates the microbunching effects. To miti-
gate the problem it was proposed to insert weak chicanes 
adjacent to the doglegs’ dipoles to provide local R56-
compensation [9]. Specifically, two local compensation 
chicanes have been designed to compensate R56 in the 
first dogleg (DL1), with three more compensation chi-
canes inserted after the spreader in the hard x-ray trans-
port line, and two more inserted in the soft x-ray transport 
line. Because of an interesting 3D space-charge ef-
fect [11], it turns out that exact local R56-compensation 
does not provide maximum suppression of the micro-
bunching instability. To find the optimum setting of the 
compensating chicanes we scanned the bending angle of 
all dipole magnets in all compensation chicanes by a same 
scaling factor; with 0% corresponding to the nominal 
design setting for exact R56-compensation. As a measure 
of the instability we considered the rms current fluctua-
tions along the bunch core relative to a smoothened cur-
rent profile fitted to a cubic polynomial, as observed at 
the entrance of the FEL undulators. 

Figure 8 shows the rms current fluctuation as a function 
of the percentage increase from nominal of the compen-
sating chicanes’ bend angle (for transport of 100 pC 
bunches to the hard x-ray FEL). It is seen that 20% in-
crease, corresponding to about 1.5 times larger |R56 |, 
yields the least current fluctuation. 

Figure 9 shows the final longitudinal phase space and 
current profile with the nominal compensation setting and 
20% increase of bend angle. Notice how the 20% setting  
results in much reduced microbunching as seen in both 
longitudinal phase space and  current profile.  

 

Figure 7: Schematic of the LCLS-II beam delivery sys-
tem. 

 

Figure 8: RMS bunch current-profile fluctuations as a 
function of relative deviation from nominal of the com-
pensation chicanes’ bend angle (entrance of the hard x-
ray FEL; 100 pC charge) . 
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Figure 9: Longitudinal phase space (top) and current 
profile (bottom) with nominal (red) and 20% (green) 
larger bend angle in the compensating chicanes  (100 pC, 
entrance of  hard x-ray FEL)  
 

PARALLEL DESIGN PARAMETER OP-
TIMIZATION 

Differential evolution is a simple yet efficient popula-
tion-based, stochastic, evolutionary algorithm for global 
parameter optimization [12]. In a number of studies, the 
differential evolution algorithm performed effectively in 
comparison to several stochastic optimization methods 
such as simulated annealing, controlled random search, 
evolutionary programming, the particle swarm method, 
and genetic algorithm.  

The differential evolution algorithm starts with a popu-
lation initialization. A group of NP solutions in the con-
trol parameter space is randomly generated to form the 
initial population. This initial population can be generated 
by sampling from a uniform distribution within the pa-
rameter space if no prior information about the optimal 
solution is available, or by sampling from a known distri-
bution (e.g., Gaussian) if some prior information is avail-
able. After initialization, the differential evolution algo-
rithm updates the population from one generation to the 
next generation until reaching a convergence condition or 
until the maximum number of function evaluations is 
reached. At each generation, the update step consists of 
three operations: mutation, crossover, and selection. The 
mutation and the crossover operations produce new can-
didates for the next generation population and the selec-
tion operation is used to select from among these candi-
dates the appropriate solutions to be included in the next 
generation.  During the mutation operation stage, for each 
population member (target vector) xi, i = 1, 2, 3, • • • ,NP 

at generation G, a new mutant vector vi is generated by 
following a mutation strategy. Some commonly used 
mutation strategies in past studies are [12]: 

 
where the integers r1, r2, r3, r4 and r5 are chosen randomly 
from the interval [1,NP] and are different from the cur-
rent index i, Fxc is a real scaling factor that controls the 
amplification of the differential variation, xb is the best 
solution among the NP population members at the genera-
tion G, and Fcr is a weight for the combination between 
the original target vector and the best parent vector or the 
random parent vector.  

The use of multiple mutation strategies makes the dif-
ferential evolution algorithm complicated to implement 
and use appropriately. In this study, we developed a new 
adaptive unified differential evolution (AuDE) algorithm 
for global optimization [13]. This algorithm uses only a 
single mutation expression, but encompasses almost all 
commonly-used mutation strategies as special cases. It is 
mathematically simpler than the conventional algorithm 
with its multiple mutation strategies, and also provides 
users the flexibility to explore new combinations of con-
ventional mutation strategies during optimization. By 
making the control parameters in the mutation and cross-
over stages self-adaptive, it also sets the user free from 
choosing an appropriate set of control parameters for each 
optimization problem. 

This single unified mutation expression can be written 
as:  

This unified mutation expression represents a combina-
tion of exploitation (from the best found solution) and 
exploration (from the random solutions) to generate a new 
mutant solution. For example, one can see that for F1 = 0, 
F2 = 1, and F4 = 0, this equation reduces to DE/rand/1; for 
F1 = 1, F2 = 0, and F4 = 0, it reduces to DE/best/1. Using 
the single unified expression the ten mutation strategies of 
the standard differential evolution algorithm can be writ-
ten as a single mutation expression. This new expression 
provides an opportunity to explore more broadly the 
space of mutation operators. By using a different set of 
parameters F1, F2, F3, F4, a new mutation strategy can be 
achieved.  
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The goal of multi-objective optimization is to find the 
Pareto front in the objective function solution space. The 
Pareto optimal front is a collection of all non-dominated 
solutions in the whole feasible solution space. Any other 
solution in the feasible solution space will be dominated 
by those solutions on the Pareto optimal front. In the 
multi-objective optimization, a solution A is said to dom-
inate a solution B if all components of A are at least as 
good as those of B (with at least one component strictly 
better). The solution A is non-dominated if it is not domi-
nated by any solution within the group. In this study, we 
have developed a new parallel multi-objective differential 
evolution algorithm with variable population size and 
external storage. The algorithm in each generation and 
external storage can be summarized in the following 
steps: 

 
•  Step 0: Define the minimum parent size, NPmin and the 
maximum size, NPmax of the parent population. Define 
the maximum size of the external storage, NPext. 
•  Step 1: An initial population of NPini parameter vectors 
is chosen randomly to cover the entire solution space. 
• Step 2: Generate the offspring population using the 
adaptive unified differential evolutionary algorithm. 
• Step 3: Check the new population against boundary 
conditions and constraints. 
•  Step 4: Combine the new population with the existing 
parent population from external storage. Nondominated 
solutions (Ndom) are found from this group of solutions 
and min(Ndom, NPext) of solutions are put back into 
external storage. Pruning is used if Ndom > NPext. NP 
parent solutions are selected from this group of solutions 
for next generation production. If NPmin ≤ Ndom ≤ 
NPmax, NP = Ndom. Otherwise, NP = NPmin if Ndom < 
NPmin and NP = NPmax if Ndom > NPmax. The elitism 
is emphasized through keeping the non-dominated solu-
tions while the diversity is maintained by penalizing the 
over-crowded solutions through pruning. 
• Step 5: If the stopping condition is met, stop. Otherwise, 
return to Step 2. 

 
As a test of above algorithm, we used the following two 

objective functions: 

 

The distance to the Pareto front as a function of function 
evaluation number is shown in Fig. 10. It is seen that new 
proposed algorithm (“variation population with external 
storage” or VPES) can converge significantly faster than 
a widely used genetic algorithm NSGA-II [14]. 

The above population based differential evolutionary 
optimization algorithm naturally leads to a multi-level 
parallel implementation. Our method contains two levels 
of parallelization. First, the whole population is distribut-
ed among a number of groups of parallel processors. Each 
group of processors contains a subset of the whole popu-
lation. Different sets of the sub-population can be tracked 

simultaneously. Second, each objective function evalua-
tion corresponds to an accelerator simulation, for which 
parallel simulation codes are available. A good scalability 
of the parallel differential evolution algorithm has been 
demonstrated on a Cray XT5 computer using 100, 000 
processors using this method. 
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Figure 10: Distance to the Pareto front as a function of 
number of function evaluation using the genetic algo-
rithm (NSGA-II) and the new proposed algorithm 
(VPES-PMDE).
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