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Abstract

Numerical simulations have been critical in the recent
rapid developments of plasma-based acceleration concepts.
Among the various available numerical techniques, the
Particle-In-Cell (PIC) approach is the method of choice for
self-consistent simulations from first principles. The funda-
mentals of the PIC method were established decades ago,
but improvements or variations are continuously being pro-
posed. We report on several recent advances in PIC-related
algorithms that are of interest for application to plasma-
based accelerators, including: (a) detailed analysis of the
numerical Cherenkov instability and its remediation for the
modeling of plasma accelerators in laboratory and Lorentz
boosted frames, (b) analytic pseudo-spectral electromagnetic
solvers in Cartesian and cylindrical (with azimuthal modes
decomposition) geometries, (c) novel analysis of MaxwellÕs
solversÕ stencil variation and truncation, in application to
domain decomposition strategies and implementation of Per-
fectly Matched Layers in high-order and pseudo-spectral
solvers.

INTRODUCTION

Laser-driven plasma based electron accelerators (LPAs)
have demonstrated the production of high-quality electron
beams at energies ranging from 1 MeV [1] to 4 GeV [2]
in cm-scale distances, fulfilling the need for compact ac-
celeration. Numerical simulations have been critical in the
recent rapid developments of plasma-based acceleration con-
cepts, and among the various available numerical techniques,
the electromagnetic Particle-In-Cell (PIC) approach is the
method of choice for self-consistent simulations from first
principles.

Electromagnetic Particle-In-Cell method

In the electromagnetic Particle-In-Cell method [3], the
electromagnetic fields are solved on a grid, usually using
Maxwell’s equations
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∂B
∂t

= −∇ × E (1)

∂E
∂t

= ∇ × B − J (2)

∇ · E = ρ (3)
∇ · B = 0 (4)

given here in natural units, where t is time, E and B are the
electric and magnetic field components, and ρ and J are
the charge and current densities. The charged particles are
advanced in time using the Newton-Lorentz equations of
motion

dx
dt
=v, (5)

d (γv)
dt

=
q
m

(E + v × B) . (6)

where m, q, x, v and γ = 1/
√

1 − v2 are respectively the
mass, charge, position, velocity and relativistic factor of the
particle. The charge and current densities are interpolated on
the grid from the particles’ positions and velocities, while the
electric andmagnetic field components are interpolated from
the grid to the particles’ positions for the velocity update.

Various methods are available for solvingMaxwell’s equa-
tions on a grid, based on finite-differences, finite-volume,
finite-element, spectral, or other discretization techniques
that apply most commonly on single structured or unstruc-
tured meshes and less commonly on multiblock multiresolu-
tion grid structures. In the following subsections, we sum-
marize the widespread second order finite-difference time-
domain (FDTD) algorithm, as well as the pseudo-spectral
analytical time-domain (PSATD) and pseudo-spectral time-
domain (PSTD) algorithms. Extension to multiresolution
(or mesh refinement) PIC is described in, e.g. [4, 5].

Finite-Difference Time-Domain The most popular
algorithm for electromagnetic PIC codes is the Finite-
Difference Time-Domain solver

DtB = −∇ × E (7)
DtE = ∇ × B − J (8)

[∇ · E = ρ
]

(9)
[∇ · B = 0] . (10)

The differential operator is defined as ∇ = Dx x̂ + Dy ŷ +
Dz ẑ and the finite difference operators in time and space are

Proceedings of ICAP2015, Shanghai, China TUBJI2

D-2 Plasma, Laser, Dielectric and Other Acceleration Schemes

ISBN 978-3-95450-136-6

31 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



defined respectively as DtG |ni, j,k =
(
G |n+1/2

i, j,k
− G |n−1/2

i, j,k

)
/∆t

and DxG |n
i, j,k

=
(
G |n

i+1/2, j,k − G |n
i−1/2, j,k

)
/∆x, where ∆t

and ∆x are respectively the time step and the grid cell size
along x, n is the time index and i, j and k are the spatial
indices along x, y and z respectively. The difference opera-
tors along y and z are obtained by circular permutation. The
equations in brackets are given for completeness, as they are
often not actually solved, thanks to the usage of a so-called
charge conserving algorithm. The quantities are given on a
staggered (or “Yee”) grid [6], where the electric field com-
ponents are located between nodes and the magnetic field
components are located in the center of the cell faces.

Pseudo Spectral Analytical Time Domain (PSATD)
Maxwell’s equations in Fourier space are given by

∂Ẽ
∂t

= ik × B̃ − J̃ (11)

∂B̃
∂t

= −ik × Ẽ (12)

[ik · Ẽ = ρ̃] (13)
[ik · B̃ = 0] (14)

where ã is the Fourier Transform of the quantity a. As
with the real space formulation, provided that the continuity
equation ∂ ρ̃/∂t + ik · J̃ = 0 and k · k × Ẽ are satisfied, then
the last two equations will automatically be satisfied at any
time if satisfied initially and do not need to be explicitly
integrated.
Decomposing the electric field and current between lon-

gitudinal and transverse components Ẽ = ẼL + ẼT =

k̂(k̂ · Ẽ) − k̂× k̂× Ẽ and J̃ = J̃L + J̃T = k̂(k̂ · J̃) − k̂× k̂× J̃
gives

∂ẼT

∂t
= ik × B̃ − J̃T (15)

∂ẼL

∂t
= −J̃L (16)

∂B̃
∂t

= −ik × Ẽ (17)

with k̂ = k/k.
If the sources are assumed to be constant over a time

interval ∆t, the system of equations is solvable analytically
and is given by (see [7] for the original formulation and [8]
for a more detailed derivation):

Ẽn+1
T = CẼn

T + iSk̂ × B̃n −
S
k

J̃n+1/2
T (18)

Ẽn+1
L = Ẽn

L − ∆tJ̃n+1/2
L (19)

B̃n+1 = CB̃n − iSk̂ × Ẽn + i
1 − C

k
k̂ × J̃n+1/2 (20)

with C = cos (k∆t) and S = sin (k∆t).

Combining the transverse and longitudinal components,
gives

Ẽn+1 = CẼn + iSk̂ × B̃n

−
S
k

J̃n+1/2 + (1 − C)k̂(k̂ · Ẽn)

+ k̂(k̂ · J̃n+1/2)(
S
k
− ∆t), (21)

B̃n+1 = CB̃n − iSk̂ × Ẽn

+ i
1 − C

k
k̂ × J̃n+1/2. (22)

Considering the fields generated by the source terms with-
out the self-consistent dynamics of the charged particles,
this algorithm is free of numerical dispersion and is not sub-
ject to a Courant condition. Furthermore, this solution is
exact for any time step size subject to the assumption that
the current source is constant over that time step.

As shown in [8], by expanding the coefficients Sh and Ch

in Taylor series and keeping the leading terms, the PSATD
formulation reduces to the better known pseudo-spectral
time-domain (PSTD) formulation [9, 10]:

Ẽn+1 = Ẽn + i∆tk × B̃n+1/2 − ∆tJ̃n+1/2, (23)
B̃n+3/2 = B̃n+1/2 − i∆tk × Ẽn+1. (24)

The dispersion relation of the PSTD solver is given by
sin(ω∆t2 ) = k∆t

2 . In contrast to the PSATD solver, the
PSTD solver is subject to numerical dispersion for a fi-
nite time step and to a Courant condition that is given by
c∆t ≤ 2/π

√
1
∆x2 +

1
∆y2 +

1
∆x2 .

The PSATD and PSTD formulations that were just given
apply to the field components located at the nodes of the grid.
As noted in [11], they can also be easily recast on a staggered
Yee grid by multiplication of the field components by the
appropriate coefficients to shift them from the collocated to
the staggered locations. The choice between a collocated
and a staggered formulation is application-dependent.

Modeling in a Lorentz boosted frame
Modeling the interaction including the laser and the entire

plasma in the simulation box is neither practical nor needed,
as a window following the beam and the wake (a standard
and widespread technique in accelerator physics) is suffi-
cient to capture the physics. However, the large range of
scale separations between the plasma column length and the
driving laser wavelength still demands tens of millions of
time steps for the modeling of a meter long plasma capable
of boosting the energy of an electron or positron beam in the
range of 10 GeV. The numerical cost can be alleviated by
using one or more of: (i) the quasistatic approximation [12],
which takes advantage of the separation of time scales in
the dynamics of the laser and plasma electrons, (ii) enve-
lope models of the laser, (iii) running the simulation in a
Lorentz boosted frame co-propagating in the direction of
the laser, rather than in the laboratory frame [13]. We will
focus here on the last approach. When using this approach,
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the plasma column is drifting at relativistic velocity relative
to the grid, leading to the numerical Cherenkov instability
(NCI) [14] that needs to be understood and controled. The
next section summarizes the most recent developments in
the understanding and mitigation of NCI.

ANALYSIS AND MITIGATION OF THE
NUMERICAL CHERENKOV

INSTABILITY
The numerical Cherenkov instability [14] is the most se-

rious numerical instability affecting multidimensional PIC
simulations of relativistic particle beams and streaming plas-
mas [15–17]. It arises from coupling between possibly nu-
merically distorted electromagnetic modes and spurious
beam modes, the latter due to the mismatch between the
Lagrangian treatment of particles and the Eulerian treatment
of fields [18]. In recent papers we derived and solved electro-
magnetic dispersion relations for the numerical Cherenkov
instability for both FDTD [19,20] and PSATD [21,22] algo-
rithms, developed methods for significantly reducing growth
rates, and successfully compared results with those of the
Warp simulation code [23].

For either algorithm the dispersion relation can be written
in the high energy limit as

C0 + n
∑
mz

C1 csc
[(
ω − k ′z

) ∆t
2

]

+ n
∑
mz

C2 csc2
[(
ω − k ′z

) ∆t
2

]
= 0,

(25)

with coefficients C0, C1, C2 defined by Eqs. (29) – (31)
of [24] for the FDTD algorithm and by Eqs. (40) – (42)
of [25] for the PSATD algorithm. Numerical solutions of
the complete dispersion relations indicate that Eq. (25) is
quantitatively accurate for γ as small as 10 and qualitatively
useful for γ as small as 3. At still lower beam energies,
the well known electrostatic numerical instability [26, 27]
dominates.

Equation (25) involves sums over numerical aliases, k ′z =
kz +mz 2π/∆z, for wave numbers aligned with the direction,
z, of beam propagation. In the limit of vanishingly small
time-steps and cell-sizes, Eq. (25) simplifies to C0 = n,
as expected, with n the beam density divided by γ (i. e.,
the density of the beam in its rest frame). Thus, all beam
resonances in Eq. (25) are numerical artifacts, even mz = 0.
Not surprisingly, the numerical Cherenkov instability is

fastest growing at resonances between the spurious beam
modes and electromagnetic modes. The resonant instability
scales roughly as the cube root of n C2/∆t, evaluated at
ω = k ′zv, and can be destructively fast. The non-resonant
instability, on the other hand, scales roughly as the square
root of of n C2, again evaluated at ω = k ′zv. Although
slower growing, it also is troublesome, because it can occur
at smaller wave numbers.
Numerical instability growth rates can be unacceptably

large if no special measure is taken. They can be reduced by

using higher order current and field interpolation, by digital
filtering, and by numerical damping of the electromagnetic
fields (numerical damping is not explored further in this
paper and the reader is refered to [15, 28–30] for more in-
formation). Cubic interpolation, for instance, is effective at
suppressing higher order modes of the numerical Cherenkov
instability and, to a lesser extent, mz = 0, −1 modes. Digital
filtering, on the other hand, effectively zeroes fields at large
wave numbers, eliminating resonant numerical Cherenkov
instabilities there.
A “magic time step” first was observed for the so-called

"Galerkin field interpolation" [31] in LPA simulations
[15,17] and subsequently was explained analytically in [24].
It arises from approximate cancellation of the coefficients
of Ex and By in C2 for wave numbers near the dominant
numerical Cherenkov resonance. The exact location of the
“magic time step” depends on details of the field solver. In
contrast, a “magic time step” was discovered analytically for
the "Uniform field interpolation" [31]. It occurs because C2
vanishes identically at v4t/4z = 0.5 in the high γ limit. One
can concoct other, more complicated interpolation schemes
with “magic time steps”, but the value of doing so seems
small. Definitions of the three FDTD interpolation schemes
discussed here were provided in Sec. 2.4 and also can be
found in [19, 32], and of PSATD variants (a) and (b) of the
Esirkepov current conservation algorithm [33] in [25, 34].
The numerical Cherenkov instability can be viewed as

the result of numerically induced mismatches between trans-
verse fields as seen by the particles or, more or less equiva-
lently, bymismatches between transverse currents and charge
density. Correcting those mismatches, at least as they oc-
cur in coefficient C2 at large γ, can in principle make every
value of 4t a “magic time step”. A plethora of approaches
are provided in [22, 25], from which PSATD options (b1)
and (b2) of the second reference are presented here. Option
(b1) adjusts the ratio Ex/By as seen by the particles so that
C2 vanishes analytically for v = 1. The resulting growth
rates are significantly reduced, especially for v4t/4z > 1.
In fact, the residual growth at v4t/4z > 1 scales roughly
as 1/γ, although higher order numerical modes also play a
role.

Implementing these and other schemes in the PSATD al-
gorithm is straightforward, because currents and fields are
known in k-space. Analogous schemes can be implemented
readily in the FDTD algorithm, if one is willing to trans-
form currents and fields to k-space. But, one would then be
better off to use the PSATD algorithm throughout, because
it is more accurate and often less unstable. It is, however,
possible to set C2 approximately equal to zero (accurate to
six significant figures) by approximating the desired Ex/By

ratio with a fourth-order rational interpolation function, as
described in [32]. Sample simulations indicate that this ap-
proach is economical, requires minimal additional digital
filtering, and apparently has no adverse effect on physical
results at wavelengths long compare to the simulation axial
cell size. Although derived for highly relativistic flows, it
works reasonably well down to γ of order 3, below which the
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numerical Cherenkov instability ceases to be the dominant
numerical effect.
In [35], new field correction factors have been derived

that completely eliminate the mz = 0 numerical Cherenkov
instability for the generalized PSTD algorithm, including
the PSATD algorithm. When combined with a sharp cut-
off digital filter at large k, these correction factors reduce
peak growth rates to less (often much less) than 0.01 of the
beamÕs relativistic plasma frequency. These coefficients
are optimal in the sense that they differ from unity only
slightly over a broad portion of k-space while eliminating
both mz = 0 numerical instability branches. A disadvantage
from the implementation perspective is that the coefficients
must be computed numerically for each set of simulation
parameters.
Software to calculate the rational interpolation coeffi-

cients, as well as phase diagrams and resonance curves,
are available in Computable Document Format [36] at
http://hifweb.lbl.gov/public/BLAST/Godfrey/. The exten-
sive analyses involved in deriving and solving the dispersion
relations discussed in this section were performed withMath-
ematica [37].

EXTENSION AND PARALLELIZATION
OF PSATD-PIC

A quasi-cylindrical version of the PSATD algo-
rithm
When modeling 3D physical situations, the standard

PSATD algorithm typically uses a 3DCartesian mesh, which
can be computationally expensive. However, when the phys-
ical situation has close-to-cylindrical symmetry, the cal-
culations can in principle be reduced to a few 2D quasi-
cylindrical1 grids, and the resulting simulations can be much
faster. This idea has been implemented in FDTD PIC, for
instance by [38], and resulted in a speedup of one to two
orders of magnitude.
In [39], we extended this idea to the PSTAD algorithm.

Instead of the three-dimensional Fourier transform which
is used in the standard 3D PSATD, the quasi-cylindrical
PSATD algorithm uses the combination of a Hankel trans-
form (radially) and a one-dimensional Fourier transform
(longitudinally).

In this Fourier-Hankel formalism, the equations of the
Maxwell solver are structurally very similar to (21) and (22),
and thus many of the advantages of the standard 3D PSATD
carry over to the quasi-cylindrical PSATD. In particular, the
quasi-cylindrical algorithm has no Courant condition, and
has an ideal dispersion relation in vacuum. In [39], we also
benchmarked this algorithm in situations that are relevant
to laser-plasma acceleration, and we showed that it avoids a
number of numerical artifacts that are otherwise present in
FDTD PIC codes.
1 Here, the term quasi-cylindrical refers to the azimuthal decomposition
which is generally used (see e.g. [38]), and which can take into account
small departures from the purely cylindrical symmetry.

Parallelization and detailed analysis of the effects
of stencil spatial variations with arbitrary high-
order finite-difference Maxwell solver.
One possible drawback for the use of pseudo-spectral

solvers is the difficulty in scaling them to a large number
of cores on existing and, even more so on upcoming, super-
computers. To alleviate the problem, we proposed in [8]
to take advantage of the finite-speed of light that is an in-
trinsic property of Maxwell’s equations, and use domain
decomposition with local FFTs on each subdomain. While
initial tests of the method were succesfully conducted, the
use of a finite number of guard cells surrounding each sub-
domain inevitably entails a small approximation when using
the PSTD or PSATD algorithm that inevitably leads to a a
small error when using pseudo-spectral solvers, which may
sometimes result in a growing instability. Using the property
that the PSTD and PSATD solvers can be viewed as the limit
of FDTD solvers when the stencil order tends to infinity, we
presented in [40] a general analytical approach that enables
the evaluation of numerical discretization errors of fully
three-dimensional arbitrary order finite-difference Maxwell
solver, with arbitrary modification of the local stencil in the
simulation domain. This model can be used to determine
the minimum number of guard cells required to achieve a
given numerical accuracy. It is validated against simula-
tions with domain decomposition technique and Perfectly
Matched Layers (PMLs), when these are used with a very
high-order Maxwell solver, as well as in the infinite order
limit of pseudo-spectral solvers. Results confirm that the new
analytical approach enables exact predictions in each case.
It also confirms that the domain decomposition technique
can be used with a very high-order Maxwell solver and a
reasonably low number of guard cells with negligible effects
on the whole accuracy of the simulation. It also provides
a more accurate framework for analyzing the efficiency of
PMLs with high-order stencils and pseudo-spectral solvers,
confirming earlier results obtained in [41].

CONCLUSION
The Particle-In-Cell (PIC) method continues to be the

method of choice for detailed fully kinetic modeling of
plasma accelerators. Modeling in a Lorentz boosted frame
can provide orders of magnitude speedup, provided that the
numerical Cherenkov instability (NCI) is under control. Re-
cent work has led to a full understanding of the instability and
to the development of efficient mitigation techniques. The
studies have also shown that PIC methods utilizing pseudo-
spectral electromagnetic field solvers are inherently more
stable to NCI, generating renewed interest into these solvers,
that used to be very popular until the replacement of vec-
tor supercomputers by massively parallel supercomputers.
This has also prompted the development of a novel pseudo-
spectral solver with azimuthal Fourier decomposition, and a
composition of Fourier and Hankel transforms for fast sim-
ulations. The difficulty of scaling pseudo-spectral solvers
to many cores is addressed through the use of domain de-
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composition, prompting the development of a novel analytic
method for studying the effect of stencil variations.
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