
AN IMPROVED PARALLEL POISSON SOLVER FOR SPACE CHARGE
CALCULATION IN BEAM DYNAMICS SIMULATION

Dawei Zheng∗, Ursula van Rienen, University of Rostock, Rostock, Germany
Ji Qiang, LBNL, Berkeley, CA, USA

Abstract
In numerous beam dynamics simulations of particle ac-

celerators, the space charge calculation is a critical issue.
The ways to calculate the space charge force vary in different
kinds of methods. A common method based on Green’s
function in free space is often implemented in various PIC
(particle-in-cell) simulation codes for beam tracking. How-
ever, the calculation time of the Poisson solver for both, serial
and parallel cases can reach a high percentage of the whole
simulation time consumption. In this paper, we present an
improved parallel Poisson solver. The enhanced solver fo-
cuses on three aspects of efficiency improvement: using
the reduced integrated Green’s function, using the discrete
cosine transform for Green’s function, using a novel fast
implicitly zero-padded convolution routine. The amended,
parallel Poisson solver is implemented using MPI and Open
MP. We study the strong scaling and the weak scaling for
the scalability property of the Poisson solver, too. The novel
solver is integrated into the IMPACT-T code in order to
compare it with the commonly used Poisson solver.

INTRODUCTION
For the particle accelerator research, simulations are cri-

tical tools from the design to the operation. Furthermore,
the space charge calculation constitutes a major part of the
beam dynamics simulation, which considers the low energy
region of the accelerators. Applying the mid-point rule on
an equidistant grid for the numerical integration of Poisson’s
equation, the method based on Green’s function in free space
is often given as:

ϕ(rl) ≈
1

4πε0
·

(Nx,Ny,Nz)∑
l′ =(1,1,1)

ρ(r′l′)G̃(rl, r′l′), (1)

where l = (i, j, k), l′ = (i′, j ′, k ′) and G̃(rl, r′l′) =
hxhyhzG(rl, r′l′). The discrete ϕ(rl) is obtained by Fourier
convolution theorem. Additionally, Hockney and Eastwood
[1] have published an efficient way to extend the charge den-
sity, which is required for the Fourier convolution. A further
study of an integrated Green’s function method which is suit-
able for the novel Free Electron Lasers (FELs) is described
in [2] [3]. For this kind of 3D FFT-typed Poisson solver, the
time and memory consumption may easily reach the limit for
PC simulation. The parallel implementation of the routine is
preferred for a higher level computing performance. In this
paper, we present an improved parallel Poisson solver, which
differs from the commonly used routine. The efficiency im-
provement is impressive and valuable referenced for other
parallel FFT-typed Poisson solver codes in the community.
∗ dawei.zheng@uni-rostock.de

THE IMPROVED PARALLEL POISSON
SOLVER

The improved parallel Poisson solver is based on the effi-
cient serial Poisson solver outlined in [4]. Three aspects of
efficiency improvement are enhanced:

1. Using the reduced integrated Green’s function (RIGF):

G̃RIGF(r(i, j,k)) =
{

G̃IGF(r(i, j,k)) 1 ≤ w ≤ Rw;
hxhyhzG(r(i, j,k)) Rw ≤ Nw + 1;

where G̃IGF is described in [2] [3] and Rw is determined by
an adaptive method in [4], where w represents the indices
x, y, z.
2. Using the discrete cosine transform (DCT) for Green’s

function: define g = {g1, g2, . . . gn+1}, and the real even
symmetric extension (RESE) of g is gex , i.e. gex =

{g1, g2, . . . gn+1, gn, gn−1, . . . g2}2n. Then

FFT2n(RESE(g)) = 2 · RESE(DCTn+1(g)).

The same result succeeds by replacing the factor 2 to a fac-
tor 8 for 3D extension case. The complexity reduces signifi-
cantly from O((log2 2n)3) to O((log2 n)3) besides RESE.

3. Using a novel fast implicitly zero-padded convolution
routine: define the unit: ωm

m = 1. We achieve a FFT with-
out the last bit reversal stage named fftpadBackward and
fftpadForward as in Alg. 1.

Algorithm 1 fftpadBackward, fftpadForward

Input: f
Output: f , u
1: function fftpadBackward
2: for k = 1→ n do
3: u(k) ← ωk−1

2n f (k);
4: end for
5: f (:) ← IFFT[f (:)];
6: u(:) ← IFFT[u(:)];
7: end function

Input: f , u
Output: f
1: function fftpadForward
2: f (:) ← FFT[f (:)];
3: u(:) ← FFT[u(:)];
4: for k = 1→ n do
5: f (k) ← f (k) +

ω−k+1
2n u(k);

6: end for
7: end function

In principle, the fftpadBackward and fftpadForward
transforms are deformed inverse FFT (IFFT) and FFT, re-
spectively. The two outputs of the fftpadBackward are the
same as those obtained by separating the even-odd indices of
the 2n sized FFT of the explicitly zero padded f , i.e. we de-

fine fex =
[

f
0

]

2n
and [f , u]n = fftpadBackwardn(f), which

results in [IFFT2n(fex)odd, IFFT2n(fex)even] = [f , u]. The
fftpadForward transform is obtained by the inverse proce-
dure.

The 2D and 3D fftpadBackward (fftpadForward) are
the same procedures as 2D and 3D IFFT (FFT), i.e. they

TUCWC2 Proceedings of ICAP2015, Shanghai, China

ISBN 978-3-95450-136-6

44C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

F-1 Parallel Computing and Emerging Technologies

execute a 1D transform along each direction, serially. The
improved 3D parallel Poisson solver is further developed to
suit a real to complex (R2C) 1D FFT along the first direction
in order to reduce the number of further deformed FFTs in
other directions.

THE IMPROVED PARALLEL POISSON
SOLVER’S ROUTINE

All processors utilized in the solver are mapped onto a
2D process grid. Each process owns a unique ID (RowID,
ColID) as the element of a matrix.
The charge density ρ(i, j, k) is distributed to the pro-

cess grid by filling (j, k)s into the (RowID,ColID)s as
(jlocal, klocal)s equally. Only the is are free to be utilized.
Since the indices of j, k are distributed to the grid, the ele-
ments ordered by the two directions can not be used directly,
e.g. for the Fourier transforms in the other two directions.
Communications and transports of data are therefore a spe-
cial challenge in supercomputers. Unlike the shared-memory
computer programming (as PCs), the transport of data is
a serious problem in parallel programming (as supercom-
puters). This problem requires intensive concern. We use
the MPI_alltoall for the high dimension transpose. The
specified transpose function rearranges the 3D vector by ex-
changing the order of direction e.g. i j k to jik or k ji for each
time. The time consumption of the data transpose can reach
a high percentage of the total CPU time comparing to the
pure computing time for high dimension Fourier transforms.
The programming routine is organized by four parts:
1. The RIGF calculation and the related DCT (Fig.1) –

the Green’s function values G, which is distributed in the 2D
grid processes by the order (k, j, i) (k(blue), j(red), i(green))
in each process, are calculated by the RIGF method; the 3D
DCT of G is implemented. The results are extended in j
direction in demand for further multiplication in Part 3.

Gk,j,i = RIGF(z, y, x)

On each processor

1D DCT along k

and,kji2ijk transpose

1D DCT along i and

ijk2jik transpose

Gi,j,k Gj,i,k

1D DCT along j and

extend j with odd,

even indices

Gjo,i,k

Gje,i,k jik2kij transpose

jik2kij transposeGk,i,jo

Gk,i,je

Figure 1: The RIGF calculation and the related 3D DCT.

2. The 3D backward deformed FFT routine (Fig.2) – the
ρ is firstly padded with the same size zeros in i direction as
Exρi, j,k . The following deformed 3D FFTs is constructed by
the R2C FFTs from the real vectors Exρi, j,k to the complex
vectors Cρi, j,k along i, the fftpadBackwards along j, and
the fftpadBackwards along k.

Exρi,j,k

Exρi,j,k =

[
ρ
0

]

2Ni

Cρj,i,k
1D R2C FFT along i

and ijk2jik transpose

Complex vectors

Ni(Cρ) := Ni(ρ) + 1

1D fftpadBackward along j

and jik2kij transpose

Cρk,i,jo

Cρk,i,je

1D fftpadBackward

along k

Cρke,i,je

Cρko,i,je

1D fftpadBackward

along k
Cρke,i,jo

Cρko,i,jo

Figure 2: The 3D backward deformed FFT routine.

3. Multiplication in spectral domain – the results from
Part1 and Part2 are multiplied element by element according
to the following rule:

Cρke,i, jx = RESE(G̃k,i, jx)even ∗ Cρke,i, jx , and
Cρko,i, jx = RESE(G̃k,i, jx)odd ∗ Cρko,i, jx,

where x expresses e (even) or o (odd).
4. The 3D forward deformed FFT routine part (Fig.3) –

the inverse procedure of Part 2 is performed.

Exρi,j,k

Real vectors

Cρj,i,k
jik2ijk transpose and

1D C2R FFT along i

Complex vectors

Ni(Cρ) := Ni(ρ) + 1

kij2jik transpose and

1D fftpadForward along j

Cρk,i,jo

Cρk,i,je

1D fftpadForward

along k

Cρke,i,je

Cρko,i,je

1D fftpadForward

along k
Cρke,i,jo

Cρko,i,jo

Figure 3: The 3D forward deformed FFT routine.

STUDY OF THE IMPROVED PARALLEL
POISSON SOLVER

The parallel Poisson solver is written in Fortran 90 with
the Open MPI, compiled by the Intel compiler, and executed
on the Edison supercomputer at the NERSC (National En-
ergy Research Scientific Computing Center).

1. We carry out the strong scaling and weak scaling study
of the solver. The results are shown in Fig.4. The weak
scaling figures (above) are plotted by fixing the ratio between
the size of the problem and the cores in order to keep it
constant. The starting points are 323/core (left) and 643/core
(right), respectively. The strong scaling figures (below) are

Proceedings of ICAP2015, Shanghai, China TUCWC2

F-1 Parallel Computing and Emerging Technologies

ISBN 978-3-95450-136-6

45 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

plotted by fixing the size of the problem, 1283 (left) and
2563 (right), as well as increasing the number of cores in
processing. Therefore, the problem is more like a cpu-bound
rather than a memory-bound problem.

100 101 102 103

2 · 10−2
4 · 10−2
6 · 10−2
8 · 10−2

0.1

Cores

Ti
m
e
(s
)

100 101 102 103
0

0.2
0.4
0.6
0.8

1

Cores
Ti
m
e
(s
)

100 101 102 103

10−2

10−1

100

Cores

Ti
m
e
(s
)

100 101 102 103
10−2

10−1

100

101

Cores

Ti
m
e
(s
)

Figure 4: The weak scaling (top) and strong scaling (bottom)
study.

2. The OpenMP is a shared memory multiprocessing
API, which cooperates with the OpenMPI process together
in the same computational node. Probably, the best choice
may be 1-4 MPI processes per NUMA node (each processor
(12 cores) constitutes a NUMA node, and each node has
two processors) with 12-3 OpenMP threads each node on
Edison. Additionally, there is a time cost in the preparation of
OpenMP when we link the OpenMP library. The OpenMP
parallel parts are mainly developed for “do-loops”. The
SIMD, up to the date, is not further optimized. In Fig. 5,
the process numbers Np in use are fixed by 96, and the
thread number per node varies from 1 to 6. For Nx,y,z = 512
(left) and Nx,y,z = 256 (right), we plot all the CPU time
for different OpenMP threads per process in use (for two
memory affinity situation: numa_node and depth).

1 2 3 4 6
0

0.5

1

1.5

Threads

Ti
m
e

Numa_node depth

1 2 3 4 6

5 · 10−2

0.1

0.15

0.2

0.25

Threads

Ti
m
e

Numa_node depth

Figure 5: CPU time for different OpenMP threads per pro-
cess in use.

As shown in Fig.5, the Open MPI obtains better results
than the hybrid Open MPI+OpenMP case with the same
number of cores in use.

3. Comparing the factors of time consumption and accu-
racy, the improved Poisson solver computes faster than the
commonly used Poisson solver, whereas their calculations
are equally accurate.

Example 1: We track an extreme long bunch with the
transverse aperture size Rx,y = 0.15m, longitudinal size
Lz = 1.0e5m, at the initial sections of a virtual accelerator.
Some simulation parameters are dt = 1.0e − 12
, s, tstep20, 000, 000, Nx,y,z = 64, Ncol = 8, Nrow = 8. In
Fig. 6, we have shown a perfect match in RMS bunch size and
RMS emittance in x direction between the improved parallel
Poisson solver and the commonly used Poisson solver routine.
For the other directions, y and z, the results match perfectly.

Figure 6: A schematic plot of comparison of the RMS size
and RMS emittance in x direction.

Example 2: We compare the efficiency improvement of
the new solver. As shown in Tab.1, the speed-up is as high as
2, which is significant. For small size problems with a large
number of processes, the speed-up is not obvious. This may
be because the data transports occupy a high percentage of
the whole time consumption in both solvers.

Table 1: Comparison of the Common IGF and Novel RIGF
Solvers

Nw Np tRIGF tIGF Nw Np tRIGF tIGF

64 4 93.57 s 221.9 s 64 256 7.136 s 8.311 s
64 16 26.82 s 64.73 s 128 256 25.95 s 40.45 s
64 64 9.871 s 20.28 s 256 256 198.5 s 298.8 s

In conclusion, the new improved parallel Poisson solver
proves to be more efficient than the commonly used rou-
tine in the calculation of space charge for beam dynamics
simulations.

ACKNOWLEDGMENT
Dawei Zheng is supported by the China Scholarship Coun-

cil. This research was partially supported by the U.S. Depart-
ment of Energy under Contract no.DE-AC02-05CH11231.

TUCWC2 Proceedings of ICAP2015, Shanghai, China

ISBN 978-3-95450-136-6

46C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

F-1 Parallel Computing and Emerging Technologies

REFERENCES
[1] R.W. Hockney and J.W. Eastwood, Computer Simulation Us-

ing Particles, Institut of Physics Publishing, Bristol, (1992).

[2] J. Qiang, S. Lidia, R.D. Ryne, and C. Limborg-Deprey, Phys.
Rev. ST Accel. Beams, vol 9, 044204 (2006).

[3] J.Qiang, S. Lidia, R.D. Ryne, and C. Limborg-Deprey, Phys.
Rev. ST Accel. Beams, vol 10, 129901 (2007).

[4] D. Zheng, G. Pöplau and U. van Rienen, “Efficiency opti-
mization of fast Poisson solver in beam dynamics simulation”,
Computer Physics Communications, In press (2015).

Proceedings of ICAP2015, Shanghai, China TUCWC2

F-1 Parallel Computing and Emerging Technologies

ISBN 978-3-95450-136-6

47 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

