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Abstract
A detailed knowledge of transverse and longitudinal beam

coupling impedance is required to quantify intensity thresh-
olds due to coherent instabilities and beam induced heating
in ion synchrotrons. Particularly at low frequencies, where
the beam pipe dominates the impedance spectrum, analyt-
ical calculations are widely used since contemporary time
domain methods are inapplicable. We present two different
ways to compute beam coupling impedance in the frequency
domain. One is based on the Finite Integration Technique
(FIT) and it is implemented in 2D and 3D. The staircase
FIT approximates curved structures only poorly, therefore
another solver is implemented in 2D based on the Finite
Element Method (FEM). The unstructured triangular FEM
mesh allows to approximate curved structures better. More-
over, it allows to compute the space charge impedance, since
the shape of the beam and the beam’s dipole moment can
be represented properly, such that the direct space charge
force can be subtracted and only the coherent force remains.
Space charge and resistive wall impedance results for GSI
and the upcoming FAIR project and the impedance of the
beam pipe for the Future Circular Collider (FCC-hh) design
study are presented as applications.

INTRODUCTION
The beam in a synchrotron is modeled as a disc with radius

a and surface charge density σ traveling with velocity βc.
The displacement dx of the beam (i.e. a coherent dipole
oscillation) can be approximated to first order by

σ(%, ϕ) ≈
q
πa2 (Θ(a − %) + δ(a − %)dx cos ϕ). (1)

The force acting back on the beam is described by the cou-
pling impedance [1]

Z
‖
(ω) = −

1
q2

∫
beam

~E · ~J
∗

‖
dV (2)

Z
⊥,x(ω) = −

βc
(qdx)2ω

∫
beam

~E · ~J
∗

dx
dV . (3)

where the beam current in frequency domain (FD) is ob-
tained from Eq. (1) as

Js,z(%, ϕ, z;ω) = J
‖
+ Jdx

= (σ ‖ + σdx )e−iωz/βc (4)

such that its magnitude is independent of the beam veloc-
ity. Equations (2), (3) can be interpreted as functionals of
∗ niedermayer@temf.tu-darmstadt.de

the solution of Maxwell’s equations recast in the curl-curl
equation

∇ × ν∇ × ~E − ω2ε ~E = −iω ~Js, (5)
with the complex reluctivity ν = µ−1 = (µ′+ iµ′′)/|µ|2, and
the complex permittivity ε = ε0εr − iκ/ω (conductivity κ)
as functions of position and frequency.

FINITE INTEGRATION TECHNIQUE
The FIT discretizes Eq. (5) as

C̃MνC_e − ω2Mε
_e = −iω

__j
s
, (6)

usually on a rectangular (staircase) mesh of size np =

NxNyNz . This represents a complex (non-Hermitean) ill
conditioned system of size 3np × 3np. A simple way to
include the beam entry and exit is to use a Floquet boundary
condition, i.e. the longitudinal partial derivative matrix of
size np × np becomes

[
Pz

]
m,n =




−1, if m = n
1, if m = n − NxNy

e−iωL/v, if m = n − NxNy + np

0, else.

(7)

Note that P̃ = −PH and thus C̃ = CH, but in the presence
of losses Eq. (6) remains non-Hermitean. In the case of
only one cell in longitudinal direction one obtaines a 2D
scheme, i.e. Pz = −1 + exp(−iω∆z/v) becomes a scalar.
Due to the numerical simplicity, it is advantageous to treat
distributed impedances of long (2D) structures by means
of direct solvers (see [2] and references therein for details).
However, as visible in Fig. 1, the dipole source to compute

Figure 1: Modeling of the dipole source in the FIT (left) and
FEM (right) approach.

the transverse impedance cannot be modeled accurately by
the staircase FIT. Thus the direct space charge fields, which
depend on the shape of the dipole cannot be removed. This
issue is solved by using an unstructured mesh and the finite
element method.
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FINITE ELEMENT METHOD

In 2D, Eq. (5) can be solved by the FEM using nodal func-
tions for the longitudinal and Nédélec edge functions [3]
for the transverse components (see [4] for details). The
implementation is done in Python using the FEniCS pack-
age [5, 6]. The mesh originates from Gmsh [7]. Edge func-
tions are advantageous because the tangential electric field
on a material boundary is continuous, while the normal
one is allowed to have a jump (as is physically correct).
Since lowest order edge functions are incapable to repre-
senting functions with nonzero divergence, a Helmholtz
split has to be applied to Eq. (5). Apart from the additional
Poisson system, the curlcurl system presents for lowest or-
der elements an (ill conditioned) complex system of size
nn + ne, which is solved by a direct solver from PETSc,
see [8]. The hereby presented code (’BeamImpedance2D’,
see also [4]) includes also a surface impedance boundary
condition (SIBC) ~n×~n× ~E = Zs~n× ~H . This allows to simu-
late the impedance of resistive beam pipes at high frequency
without resolving the extremely small skin depth δ in the
mesh.

AN APPLICATION FOR FAIR

The extraction kickers for the SIS100 synchrotron consist
of a 80 cm long ferrite (Ferroxcube 8C11 [9]) yoke with
about 10 cm aperture and 6 cm thickness. The beam scenario
with highest intensity and shortest bunch length (single 2E13
protons bunch, σs = 3.7m) causes the highest stationary

Figure 2: SIS100 transfer kicker magnet, FIT and FEM
meshes, and longitudinal impedance results.

heat power as

P = ω0
q2v2

2π2

∫ ∞

0
Re{Z

‖
(ω)}|λ(ω) |2dω. (8)

The impedance of such a kicker device can be strongly re-
duced by interrupting the magnetic circuit by means of cop-
per sheets in themagnet gap(s). Computation results indicate
that for 2.8mm magnet gaps the heat load is 7327W with
open gaps and 48W with the gaps filled by a copper sheet
(see [10] for more details). As visible in Fig. 2, the FIT
and FEM codes obtain roughly the same impedance results.
However, note that for curved structures, the staircase FIT
code supposedly gives inaccurate results.

AN APPLICATION FOR THE FCC-HH
DESIGN STUDY

The future circular collider (FCC) design study aims for
a post-LHC accelerator. The hadron-hadron (hh) scenario is
outlined for proton collisions up to 100 TeV c.o.m. and a cir-
cumference of roughly 100 km [11]. It will be the first hadron

Figure 3: Technical drawing (R. Kersevan, CERN) and
Gmsh mesh of the proposed FCC-hh beam pipe.

accelerator project where synchrotron radiation plays a sig-
nificant role. Therefore, the beam pipe is designed with a slit
and a reflector (see Fig. 3), in order to lead the synchrotron
radiation away from the beam (otherwise photo-electrons
could build up an unstable electron cloud). Moreover, an
impedance reduction is obtained by adding a copper layer
of 80µm to the inner surface of the Titanium beam screen.

The transverse impedance of such a complicated structure
is computed with BeamImpedance2D. Since only highly
conducting materials at low temperature (RRR ≈ 100) are
involved, the SIBC is valid for frequencies down to 100Hz.
However, in order to model the thin copper layer on the
titanium pipe, a two-layer SIBC, i.e.

Zs (ω) =
Ex

Hy

������z=0

=
1 + i
κ1δ1

Meikz1d + Ne−ikz1d

Meikz1d − Ne−ikz1d
(9)

M = 1 +
√
µ1κ2
µ2κ1

, N = 1 −
√
µ1κ2
µ2κ1

(10)

δp =

√
2

µpκpω
, kz p =

1 − i
δp

, p = 1, 2 (11)

which is the analytic solution of a 1D diffusion problem,
is required. A plot of the surface impedance for the cold
titanium pipe with copper coating can be seen in Fig. 4.
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Figure 4: Surface impedance for Copper (κ = 6E7S/m)
coated Titanium (κ = 1.8E6S/m) with both RRR = 100.

Figure 5 shows the transverse impedance of the pipe,
where only the inner vacuum part was meshed and the two-
layer SIBC was employed. The results are compared to
analytic ones by the Mathematica [12] code Rewall [13]
for a round multilayer pipe. As expected, the thick wall
impedance lies between the one for minimal and maximal
pipe radius. Moreover, the vertical impedance must be larger
than the horizontal one, since the vertical aperture is smaller
(for a round pipe the transverse impedance scales as ∝ b−3).
The bump of the imaginary part at high frequency is arti-
ficial and originates from improper cancellation of space
charge impedance at very high γ = 50000, i.e. the error of
the space charge impedance is larger than the imaginary part
of the resistive wall impedance.
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Figure 5: Transverse impedance result for the pipe in Fig. 3
(1m length) relevant for the Coupled Bunch (at low frequen-
cies) and TMCI (broadband at high frequency) instabilities.

CONCLUSION AND OUTLOOK
Two beam coupling impedance solvers were presented.

One is based on FIT and implemented in 2D and 3D using a
Floquet boundary condition. The staircase FIT is, however,
inappropriate to model curved structures. This is partic-
ularly a problem for the transverse impedance at β < 1,

since the direct space charge impedance which outshines
the overall imaginary impedance result, is not known for a
twin-pencil-beam excitation (Fig. 1) and can thus not be re-
moved. When using an unstructured mesh and the FEM, the
source for the dipolar transverse impedance can be modeled
as a dipole ring, which has analytically known fields inside.
These contributions can be removed up to the accuracy of
the field computation. The transverse wall impedance can
thus be computed for arbitrary beam velocity. Moreover, the
SIBC avoids meshing the wall, which makes this approach
applicable up to very high frequencies.
The development of a 3D FEM solver is outlined for the

future. Since the Floquet boundary conditions cannot be
applied on an unstructured mesh so easy, special beam port
boundary conditions will be implemented (see e.g. [14]).
The Floquet boundary conditions with FIT, however, can
also be employed to compute the impedance of periodic
structures. Examples of such are dielectric gratings, which
are used in Dielectric Laser Acceleration (DLA), see [15].
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