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Abstract 
The goal of tomography is to reconstruct a higher di-

mensional distribution from a series of projections meas-
ured in a lower dimensional subspace. In the absence of 
large number of projections, the maximum entropy algo-
rithm can reconstruct a distribution that maximizes the 
entropy and simultaneously reproduce all the measured 
projections exactly. The MENT algorithm [1] has been 
applied to the reconstruction of the transverse and longi-
tudinal phase space distributions at particle accelerators. 
Only one- dimensional intensity profiles of different beam 
transfer matrices have to be measured. The article mainly 
completed the code for the tomographic reconstruction of 
the longitudinal phase space where non-linear transfor-
mations have to be taken into account, and finally intro-
duced the test result of the real data taken from accelera-
tor in TRIUMF for transverse tomography [3]. 

MAXIMUM ENTROPY TOMOGRAPHY 

Tomography 
We will only be dealing with 2-D distribution here. Let 

f(x,y) be the source distribution defined over an area. It 

satisfies  

( , ) 0 ( , ) 1f x y and f x y dxdy          (1) 

The projection P(x) of this distribution on the x-axis is 
defined by 

             P( ) ( , )x f x y dy



     ⑵ 

The input data for tomographic reconstruction is a set 
of such projection onto N different s-axes defined by a set 
of transformation matrices  

i

i

s x a b x
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t y c d y

       
               

  ⑶ 

The transformation matrix Ri can be a rotation matrix, 
used for real space reconstruction, or the beam transport 
matrices for reconstruction of phase space. It conserves 
the area of the source distribution because det(Ri)=1. Us-
ing the inverse transformation from the ith projection co-
ordinates (s,t) back to the source plane (x,y), The ith pro-
jection is represented as  

( ) [ ( , ), ( , )]i i iP s f x s t y s t dt



   (4) 

The goal is to invert Eq. (4) and determine the function 
f(x,y). However, the inversion is not unique unless the 
number of projections I is infinite. For a finite number of 
the measurements, many different distributions exist that 
can reproduce all the measured projections. Out of these 
distributions, the one that has the maximum entropy and 

satisfies the boundary conditions of Eq. (4) is the most 
appropriate one, because it contains the least information. 

Maximum Entropy Algorithm 
In the thermodynamics entropy is defined as a measure 

of the multiplicity of system. For the continuous distribu-
tion f(x,y), the entropy is written as 

E( ) ( , ) ln ( , )f f x y f x y dxdy
 

 
    (5) 

For a system of a large number of particles, the most 
probable distribution will be the distribution of the high-
est entropy. 

Taking into account the boundary conditions, the ex-
tended entropy function is written as 

1

( , ) ( ) ( )[ ( , ) ]
I

i i i i
i

f E f s P f x y dt ds 





    

(6) 

Where xi and yi are functions of s,t, and where the 

i ( )s  denotes the Lagrange multiplier functions. The 

conditions for the stationary solution are 
( , ) ( , )

0 0
i

f f
and

f

   


 
    

 
 (7) 

The first condition in Eq. (7) is in fact equivalent to the 
constraints defined by Eq. (4), whereas the second one 
gives 

1 1

ln[ ( , )] 1 0 ( , )
II

i i
i i

f x y or f x y H
 

       
(8) 

Where the unknown Lagrange multipliers i  have been 

replaced by the equally unknown function 

iH exp( 1/ )i N  . The arguments of these functions 

are is i ia x b y  , completely determined by the projec-

tion. So, the task is merely to find these H-values for the 
equation. 

Since the measured projections are received as discrete 
rather than continuous distributions, it’s natural to formu-
late a binned projection as follows  

( 1)

ijG ( ) ( , )
i j

ij

s

i ijs
P s ds f x y dxdy

  

 
      (9) 

Where the coordinate transformation from (s,t) to (x,y) 
with Jacobian equal to 1 is applied, and 

ij ( 1,2, , )ij J   denotes a characteristic function 

( 1)

ij

1
( )

0

ij i js s s
s

otherwise

  
  


   (10) 

Proceedings of ICAP2015, Shanghai, China TUDBC3

G-1 Beam-physics, Magnet design and Magnetic Measurements

ISBN 978-3-95450-136-6

55 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Therefore, Eq. (8) can be written as  

           
11

( , )
iJI

ij ij
ji

f x y H


     (11) 

Substituting Eq. (11) into Eq. (9) gives an iteration rela-
tion for the factors Hij 

ij ij
1

G H H
kJI

ij kl kl
lk i

dxdy
 

 


 
   

 
       (12) 

So 

1

Hij
{ }k

ij

I J

ij kl kllk i

G

dxdy H



 

 (13) 

After the H-factors are computed, they can be substitut-
ed back into Eq. (11) to compute the distribution function 
f(x,y). 

Longitudinal Phase Space Tomography 
For longitudinal tomography, the final result we get is 

about E  and t  

0E (cos( ) cos( ))

sin( 0)( 0)

1
cos( 0)( 0) ^ 2+

2

i a

i a

a

E qU

E qU

qU

 
  

  

    
   

  

 

                                                             (14) 

where 

- 0=2 f t     

as we all know, t  is not that easy to measure, but we can 
easily measure E ,if we use the tomography reconstruc-
tion, we can easily get the distribution of the E and t . 

TEST RESULTS FOR LONGITUDINAL 
TOMOGRAPHY 

Test Resulto of Longitudinal Tomography for 
Short Bunches 

For short bunches, the E we test is between -
0.1 keV~0.4 keV, the t is between -0.4 ps~0.4 ps. We 
test the tomography program using 12 projections. Fig-
ure 1 is the original figure. And we use 12 different trans-
formed matrixes to transform the figure. 

And after we get the transformed figures, we do projec-
tions on x axis, and we get 12 different projections and 12 
transformed matrixes corresponding to the projections, 
and these are the data we input to the tomography pro-
gram. Figure 2 is the reconstructed figure we get from 
tomography. This result matches pretty well with the orig-
inal input figure. 

 
 

 
 

Test Result of Longitudinal Tomography for 
Long Bunches 

For long bunches, the E we test is still between -
0.1kev~0.4kev, but the t is between -40ps~40ps. As the 
same with the short bunches test, we still run the tomog-
raphy using 12 projections. Figure 3 is the original figure. 
And we still use 12 different transformed matrixes to 
transform the figure. Figure 4 is the reconstructed figure 
we get from tomography. As we can see, this result match 
pretty well with the original input figure. 

 
 
 
 

Longitudinal Tomography for no Taylor Expan-
sion 

For real data, if the bunch of the particle is too long, 
then we cannot do Taylor expansion, because we do Tay-
lor expansion of cos(phi) at phi0, and keep up to the 2nd 
order term of (phi-phi0) while omitting the other higher 
order terms. This implies that (phi-phi0) must be much 
smaller than 1 in magnitude, that means  

- 0=2 1

1 1
= = =122 ps

2 2 0.0013THz

f t

t
f

  

 

 

 


 

Therefore, when the bunch is too long, the Taylor ex-
pansion cannot be properly used. So I improve the code, 
and change the definition of the matrix, and change the 
code of coordinate transformation. And finally we suc-
ceed solving the problem. And there is no Taylor expan-
sion for long bunch. And I test the code, and it can work 
perfectly and the result of reconstruction is nearly the 
same as above we test. 

Figure 1: Original figure of 
short bunches. 

Figure 3: The original fig-
ure of long bunches. 

Figure 4：The reconstruct-
ed figure of long bunches.  

Figure 2: The reconstructed 
figure of short bunches. 
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APPLICATION OF TRANSVERSE TO-
MOGRAPHY 

The real data we taken from real machine is the view- 
screen like Fig. 5, and we can change the work current of 
the magnet to change the shape of the beam bunches just 
like Fig. 6. We can use the viewscreen to record the dif-
ferent x-y shapes of the beam bunches.  

 
 
 
 

 
After processing the viewscreen figure, we can get the 

x-y figure of the beam. Then we can do projections on x 
axis and y axis. And the projections we input to the to-
mography are showed in Fig. 7 and Fig. 8 

Figure 7 is projections on y axis, so we can use these 
data to get the result figure of y and y’. Figure 8 is projec-
tions on x axis, so we can use   these data to get the result 
figure of x and x’. 

Figures 9 and 10 are the results of y and y’. Figures 11 
and 12 are the results of x and x’. 
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Figure 5: Viewscreen fig-
ure of bunches. 

Figure 7: Projections on y- 
axis. 

Figure 9: Results of y and y’. Figure 10: Results of y and 
y’ (top view). 

Figure 11: Results of x and x’. Figure 12: Results of x 
and x’(top view). 

Figure 8: Projections on x-
axis. 

Figure 6: Viewscreen figure 
of bunches. 
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