Proceedings of ICAP2015, Shanghai, China

WEP12

SINGLE PARTICLE DYNAMICS SIMULATION AND CONTROL FOR
NSLS-II COMMISSIONING

Lingyun Yang*, Yoshiteru Hidaka, Yongjun Li, BNL, Upton, NY, USA
Guobao Shen, FRIB, East Lansing, M1, USA

Abstract

NSLS-II is the 3 GeV low emittance sychrotron light
source recently commissioned and in operation for users. We
present some software developed for lattice simulations and
machine commissioning. Majority of these tools are callable
in a high level programming language Python. These new
development and integration at both middle and high level
has made our interactive and batch control very efficient.

INTRODUCTION

NSLS-II is the 3 GeV low emittance synchrotron light
source recently commissioned and in user operations. From
its design to commissioning and operations, we have used
various accelerator phyiscs software available in the commu-
nity and also developed some new tools. Those tools have
contributed significantly to the NSLS-II project and many
of them are not limited to our own facility, they are general
tools that applicable to other accelerator beam dynamics or
storage ring commissioning problems.

SINGLE PARTICLE DYNAMCIS

At the design stage, many good simulation software are
available. They are well understood across the community
and a few widely used ones have been used for decades.
Many new tools are still being developed for various reasons:
some are simple enough to fit one file, some are pursuing
more realistic modeling, some are taking advantage of new
technologies to improve performance or user experience. At
NSLS-II, elegant [1], Tracy-2/3 [2] and TESLA [3] are
used for lattice simulation and optimization [4, 5]. Some
benchmarks were done on single particle trackings for these
code [6]. A small first and second order linear lattice code
was also developed in Python [7]. It is quick and versatile for
any linear lattice matching. An example of FMA (Frequency
Map Analysis) calculated with TESLA is shown in Fig. 1.

The local developed Tracy-2/3 [2] and TESLA [3] have
also included the momentum dependant kickmap for inser-
tion devices. Both code are symplectic integrator based track-
ing code and can do TPSA based map generation. Also, since
they are developed as a library, the Python interface was im-
plemented to call these C++ routines and analyze/visualize
the results in an IPython notebook. This is also an attractive
way for interactive real machine control and modeling.

A virtual accelerator was also deveoped based on Tracy-
2/3 for testing high level physics applications. An EPICS
access layer is put on top of Tracy-2/3 simulator. The high
level scripts can modify and retrieve magnet strength or

* lyyang@bnl.gov

A-2 Modeling of Current and Future Machines

y=0.01 mm, ntumnm=1024

x [mim)

-0.03 -0.02

Figure 1: FMA (Frequency Map Analysis) including engi-
neering tolerance such as misalignment, multipole errors.

beam dynamics information via EPICS protocol the exact
same way as accessing the hardware. This virtual accelerator
provided us an EPICS environment years before the real
commissioning.

1000

L]
4
. 8oor
g 600f
E
=]
$
E 400+
5
2001
L L
GD 10000 20000 30000 40000 50000 60000
T‘\’i..\-.,.

Figure 2: MOGA (Multi-Objective Genetic Algorithm) for
NSLS-II lattice optimization. A, B and C are three regions
that DA (dynamic aperture) correlates with nonlinear driving
terms.

In the linear and nonlinear lattice optimizations, we have
used MOGA (Multi-Objective Genetic Algorithm) to opti-
mize the dynamic aperture at different working point and
chromaticities [4,8,9]. The parallelized optimizer is efficient
and has helped us explore many more candidate lattices that
were not possible before (Fig. 2). MOGA and its variations
with different strategies have been used as a standard tool
for nonlinear lattice optimization.

ISBN 978-3-95450-136-6
87

WEP12

TOOLS FOR OPERATIONS

At the lower level controls, NSLS-II uses EPICS proto-
col [10]. Lots of general purpose tools, mostly lower and
middle level, have been developed by the EPICS collabration
and used in many accelerator facilities. For our facility, we
developed some new middle layer services and a set of high
level physics tools [11].

At the lower level we developed MASAR (machine snap-
shot save and restore) and new features in Control System
Studio [12]. They are general tools that applicable to any
EPICS based facilities.

MMLT (Matlab Middle Layer Toolkit) has been widely
used in lots of accelerator facilities. Each facility can develop
its own high level scripts on top. It was also chosen in
the NSLS-II project and physicists can use and extend its
features. In fact, other tools like SDDS are also installed to
support interested users. But given the new infrastracture
our controls system provides, developing a new middle layer
could take more advantages of them. Python was chosen by
one of our developers after careful comparison. Itis a general
purpose programming language, has good set of scientific
and visualization packages, a major player in developing
network services, a glue language for FORTRAN and C/C++,
a good support on EPICS based controls at both server and
client side, open and free. This means we can integrate
simulation and controls more close and manipulate data at
levels from low to high, server to client, desktop to cluster.

With the new middle layer services, we can map between
hardware control channels, i.e. a PV (process variable) in
EPICS, and accelerator models dynamically and globally. By
querying the server, anyone knows a list of PVs associated
to one particular instrument or a family of magnets, and
vice versa. It is like a global address book for high level
scripts who are looking for the hardware control PVs but
only knows the high level element name. It is then easy to
hide or disable one non-essential instrument, e.g. corrector
or BPM, without disturbing the functioning of client scripts.

An advantage of using general purpose programming lan-
guage for our high level script is that it is easier to make
it a service which runs 24x7 for every client. For some
applications, e.g. feedbacks, this single instance service is
not optional but required. Programs in Python or C/C++
are trivial to be wrapped for EPICS soft-ioc and share the
same code. An example is the ID (insertion device) local
bump (Fig. 3). A script which generates orbit local bump
was developed in Python is shown in Fig. 3a, and the same
library called by the script is also used for an ID local bump
IOC used by operators or beamline users is in Fig. 3b. The
common part is retrieve a list of available or specified orbit
correctors and BPMs, use the corresponding orbit response
matrix to correct the orbit to target orbit. This is shared
across high level scripts. In fact, even the general orbit cor-
rection is using this common routine by using all available
BPMs, correctors with target orbit the golden orbit.

Recently Python programming language and its scientific
libraries are heard frequently in scientific computing and

ISBN 978-3-95450-136-6
88

Proceedings of ICAP2015, Shanghai, China

IPy: Notebook

sr_localbump,_id235Can Las crscxpant: wor 02 10.03 (atosswed)

= o e El

(a) IPython notebook on generating and plotting the orbit local
bump.

NSLS I Storage Ring nsertion Device Local Bump

Target 1D
EPUISGIC2ID [T

Local ot)

(b) CSS (Control System Studio) [13] Panel for insertion deivce (ID)
radiation source point control, i.e. orbit local bump at the ID.

Figure 3: ID (Insertion Device) local bump control panel.

data science [14]. It has plenty of libraries for mathematical
functions, optimization and visualizations. For our appli-
cations on NSLS-II commissioning and operations, a good
support for both batch and interactive execution are con-
venient. Before deploying a formal batch mode script, we
could easily start interactive control or testing in an IPython
notebook where all code and results are in one place. These
kind of notebook are easier to be understood when shared
with other colleagues.

IPI: Notebook

Fle Eot Viw nser

cale_load_validate_ff_table_c23d_epu49_mode_3 Lestsaved:stos 14 P

Col Kemel Help

Figure 4: IPython notebook for 2D ID (Insertion Device)
feedforward table.

The feedforward table for insertion devices are generated
and analyzed in an IPython notebook (Fig. 4). In Python,
accessing database like MySQL or SQLite is simple and part

A-2 Modeling of Current and Future Machines

Proceedings of ICAP2015, Shanghai, China

of its standard library. Together with the hardware/model
mapping [12], we can retrieve information from magnetic
field measurement in the lab to temperature reading in the
tunnel. Although there are 1D and 2D types of feedford
tables depending on ID types, they can share a good amount
of code and the high level script can query for the information
easily.

Jandn (m)

0 0 210 70 =0

Figure 5: NSLS-II lattice from a simple Python linear lattice
code [7].

For the design we would prefer a code modeling both
physics dynamics, linear and nonlinear, and the engineering
tolerance. But for the commissioning and operations, it
might be more helpful to have a simple, fast and flexible
code. The PyLat [7] we developed is a single file Python
script (Fig. 5), but it only depends on standard library for
first and second order linear lattice computing and lattice
optimization (matching). Loading online machine data and
convert unit with measured magnet field table to models and
lattice properties are an integrated process. After tuning the

model, its settings can be put back to the real machine again.

ACKNOWLEDGEMENT

We want to thank Dr. Samuel Krinsky (1945-2014) for
his guidance and invaluable discussions, Bob Dalesio for

A-2 Modeling of Current and Future Machines

WEP12

his support of developing controls related toolset and his
vision on system architecture. We are grateful for support
from the NSLS-II. This work is supported in part by the U.S.
Department of Energy (DOE) under contract No. DE-ACO02-
98CH1-886.

REFERENCES

[1] M. Borland, “Elegant: A Flexible SDDS-Compliant Code for
Accelerator Simulation”, LS-287, Advanced Photon Source,
2000.

[2] J. Bengtsson, “Tracy-2/3”, unpublished.

[3] L. Yang, “Tracking Code Development for Beam Dynamics
Optimization”, PAC’11, New York, March 2011.

[4] L. Yang, Y. Li, W. Guo, S. Krinsky, “Multiobjective opti-
mization of dynamic aperture”, Phys. Rev. ST Accel. Beams
14 (2011) 5.

[5S] W. Guo, S. Krinsky, L. Yang, “NSLS-II Lattice Optimization
with Non-zero Chromaticity”, IPAC’ 10, Kyoto, May 2010.

[6] J. Choi, unpublished.
[71 S. Krinsky, Y. Li, unpublished.

[8] Y.Li, L. Yang, Y. Hidaka, “Efficient MOGA for NSLS-II Ring
Dynamic Aperture Optimization”, Low Emittance Workshop
2014, INFN-LNF, Frascati, Italy, Sep. 2014.

[9] L. Yang, D. Robin, F. Sannibale, C. Steier, W. Wan, “Global
optimization of an accelerator lattice using multiobjective
genetic algorithms”, NIM-A vol. 609 (2009) 1, 50-57.

[10] EPICS, http://www.aps.anl.gov/epics/.

[11] G.M. Wang etc., “Tools for NSLS-II Commissioning”,
IPAC’15, Richmond, May 2015.

[12] G. Shen, Y. Hu, M.R. Kraimer, K. Shroff, “NSLS II Mid-
dlelayer Services”, ICALEPCS’ 13, San Francisco, October
2013.

[13] Control System Studio, www.cs-studio.org

[14] J. M. Perkel, “Programming: Pick up Python”, Nature, Vol
518, Issue 7537, p 125, Feb, 2015

ISBN 978-3-95450-136-6
89

