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Abstract
TESLA is a single partile dynamics simulation code. In

the recent development and following the algorithms in
PTC [1], some normal form analysis and complex TPSA
have been added to it. The lattice functions calculation based
on symplectic integrator and normal form analysis are more
general and robust. A Python module is also developed by
wrapping the C++ code to make accelerator beam dynamics
simulation and data analysis in both interactive and batch
mode.

INTRODUCTION
TESLA is a single particle dynamics code. For the mod-

eling of storage ring lattice, it follows the framework set in
FPP/PTC [2, 3]. A nonlinear high order transfer map is first
produced by truncated power series algebra (TPSA) [4, 5]
and analyzed by normal form method to extract the lattice
properties.

Althoug using C++ templates, the initial TPSA in TESLA
was only instantiated with real numbers [5] to follow the
FORTRAN77 implementation of normal form algorithm [6].
In fact, if there was a complex TPSA available in FOR-
TRAN77, the implementation code would be much simpler
and cleaner as the theory described in paper [7]. Since the
TPSA algorithm in TESLA are general for any element type,
complex or real, the only change needs to make is the instan-
tiating type for the template, plus some functions specific to
complex numbers, e.g. real, imag, abs, norm, arg, . . . .

• TPSA operations: +, -, *, /, +=, -=, *=, /=

• TPSA functions: compress, clear, truncate, exp, log,
sin, cos, tan, sqrt, asin, acos, atan, pderivative, pbracket.

• TPSMap: *, +, -, substitute, partialInverse, inverse.

• CTPSMap (complex TPSA map): all functions in
TPSMap, real, imag, conjugate.

As pointed out by E. Forest, once having a complex TPSA,
the implementation of normal form is more clear. There is
no need to simulate complex map operations with two real
maps. This brings the new normalization routines in PTC
and therefore followed by TESLA.
One example of complex TPSA instantiation is shown

below:

c o n s t i n t NV = 2 ;
c o n s t i n t ND = 2 ;
TPST_<complex <double > > x (NV, ND) , p (NV, ND) ;
x . s e t V a r i a b l e ( 0 , 0 . 0 ) ;

5 p . s e t V a r i a b l e ( 1 , 0 . 0 ) ;
TPST_<complex <double > > t 1 (NV, ND) ;
t 1 = 0 .5∗ x∗x + p∗p ;

The output, i.e. the coefficient of power series expansion
of t1 = x2/2 + p2 is simply 1/2 and 1 before x2 and p2.

t1=
V : D= 2 L= 6 Base [ 6/6 ]

-------------------------------------
(0.000e+00,0.000e+00) 0 0 0
(5.000e-01,0.000e+00) 2 0 3
(1.000e+00,0.000e+00) 0 2 5

where D = 2 is the highest order, base is the exponent of
each dependent variables x and p. The above data means
t1 = 0 ∗ x0p0 + 0.5 ∗ x2p2 + 1.0 ∗ x0p2. The imaginary part
in the coefficients for each term in t1 are all zero.

Trignometric functions, derivatives and substitutions are
also obtained in the same way as TPST_<double> for com-
plex TPSA.

NORMAL FORM
The algorithm for normal form is described in early publi-

cations [2, 3, 6] and implemented in PTC. Here I am outline
it briefly how TESLA normalizes the map with the same
algorithm, but different TPSA library.

A full turn map is obtained first asM0(z1, z2, . . . , δ). The
closed orbit is the constant part of TPSA map. Then the δ-
dependent part will be taken out byM0 = A0 ◦M1 ◦ A

−1
0 .

From closed orbit condition z + δη =M (z + δη) + δv, we
can solve for η [3],

η = (1 −Mz )−1v

whereMz is a map for all zi , v takes out contributions from
all zi and A0 = z + δη. An example of A0 is

V: D=3 L=56 Base [ 4/56 ]
---------------------------------------------------------

1.00e+00 0.00e+00 0.00e+00 0.00e+00 1 0 0 0 0 1
0.00e+00 1.00e+00 0.00e+00 0.00e+00 0 1 0 0 0 2
0.00e+00 0.00e+00 1.00e+00 0.00e+00 0 0 1 0 0 3
0.00e+00 0.00e+00 0.00e+00 1.00e+00 0 0 0 1 0 4
1.56e-03 1.82e-03 -8.76e-03 -8.13e-03 0 0 0 0 1 5
4.96e+00 -1.79e-01 7.06e-01 6.96e-01 0 0 0 0 2 20

-1.20e+02 1.89e+01 -8.77e+01 -8.84e+01 0 0 0 0 3 55

In this perturbative approach its inverse map is A−1
0 =

z − δη with sign reversed for the δ-dependent coefficients.
The linear map is diagonalized by A2 from the eigen-

vectors ofM. We have chosen the convension A2(0, 1) =
A(2, 3) = 0. The current residual mapM2 has a rotation
map R in its linear part. An example A2 is in the following:

V: D= 4 L= 5 Base [ 4 / 126 ]
------------------------------------------------------

2.18e+00 1.39e-12 1.34e-01 3.57e-04 1 0 0 0 0 1
0.00e+00 4.58e-01 -3.00e-04 1.60e-01 0 1 0 0 0 2
3.20e-01 -4.91e-05 -9.16e-01 1.42e-12 0 0 1 0 0 3
2.34e-04 6.73e-02 -3.61e-17 -1.09e+00 0 0 0 1 0 4

and the diagonalized mapM2 (shown only up to second
order) is
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V: D= 4 L= 126 Base [ 5/126 ]
-------------------------------------------------------------
-9.80e-01 -1.98e-01 -1.34e-16 -7.75e-17 0.0 1 0 0 0 0 1
1.98e-01 -9.80e-01 1.14e-16 2.49e-16 0.0 0 1 0 0 0 2

-1.16e-16 3.14e-18 -9.80e-01 -1.98e-01 0.0 0 0 1 0 0 3
4.16e-17 -4.71e-16 1.98e-01 -9.80e-01 0.0 0 0 0 1 0 4

-1.42e-23 -2.75e-23 5.56e-23 3.84e-22 1.0 0 0 0 0 1 5
7.81e-06 -9.77e-05 5.70e-06 -2.08e-05 2 0 0 0 0 6

-1.91e-05 2.01e-05 -4.17e-06 -5.02e-06 1 1 0 0 0 7
1.23e-05 -4.16e-05 -3.01e-05 3.29e-05 1 0 1 0 0 8

-4.29e-06 -4.34e-06 -5.92e-07 2.32e-05 1 0 0 1 0 9
3.89e+00 -1.92e+01 -1.29e-04 -7.84e-02 1 0 0 0 1 10

-9.59e-05 -1.19e-05 -1.46e-05 -3.16e-06 0 2 0 0 0 11
1.22e-06 -3.76e-06 -2.82e-07 2.32e-05 0 1 1 0 0 12

-2.99e-05 -8.33e-07 -6.60e-08 -4.45e-06 0 1 0 1 0 13
1.91e+01 3.89e+00 -7.84e-02 1.29e-04 0 1 0 0 1 14

-1.50e-05 1.64e-05 -6.71e-06 2.02e-06 0 0 2 0 0 15
-2.92e-07 2.33e-05 3.88e-06 1.29e-05 0 0 1 1 0 16
-4.42e-05 -7.84e-02 3.89e+00 -1.87e+01 0 0 1 0 1 17
-4.31e-08 -2.07e-06 -1.58e-07 -3.20e-06 0 0 0 2 0 18
-7.84e-02 4.42e-05 1.96e+01 3.89e+00 0 0 0 1 1 19
1.70e-25 2.23e-22 -4.81e-26 -1.51e-21 0 0 0 0 2 20
...

The linear map has tow rotation matrix at the diagonal and
zeros (machine precision) at the off-diagonal. Since at this
stage the δ-dependence is removed, the coefficient for base
00001 is identity. If we plot the coordinates by applying
M2 on the initial coordinates iteratively, it is a circle up to
the linear order.
The residual nonlinear map becomesMnl =M2 ◦ R−1,

andM0 = A0 ◦ A1 ◦ Mnl ◦ R ◦ A
−1
1 ◦ A

−1
0 . The further

normalization is done order-by-order in a perturbative ap-
proximation. However, depends on what quantities we are
interested, we may not need go high order normalizations.
A method of calulating some twiss functions from averaging
is proposed in Ref. [3], e.g. beta function is an average of
x2. The normalized map makes averaging straight forward.
For the map starting at a different s-location s2, the full

turn map is

M2 =M1→2 ◦M1 ◦M2→1 ≡ M12 ◦M1 ◦M
−1
12

Once we have normalizedM1 = A ◦Mnl ◦ R ◦ A
−1, then

we can have

M2 = (M12 ◦ A) ◦Mnl ◦ R ◦ (M12 ◦ A)−1

i.e. B ≡ M12 ◦A normalized the full turn mapM2 starting
at s2. It simply means if we can transport the mapA from s1
to s2, we can normalize the full turn maps starting at any s-
locations. In TESLA or any polymorphic code this is trivial,
transporting a particle coordinates are same as transporting
a map. We know that R has the tune (rotation) information
and A has the s-dependant β functions. In this way we can
get β around the ring.

PYTHON BINDINGS
Python is a high level programming language convenient

for both interactive or batch scripting. Wrapping a C/C++
simulation code as Python library is well supported. Such
an API is also developed for TESLA. A short Python script
which loads the lattice and normalize the one turn map is
given in the following:

import t e s l a
r i n g = t e s l a . Ring ( "fodo_02.tslat" , "RING" )
# s i x phase space v a r i a l b e , 4 i n d e p e n d e n t
m = t e s l a . TPSMap ( 5 , 5 , 2 )

5 m. r e s e t I ( )
m. c =[1 e−6 , 0 , 0 , 0 , 1e−2 , 0 ]
pr in t m
e r r = r i n g . trackTPSMap (m, \

0 , r i n g . e l emen t s ( ) , t e s l a .AP_TRK_DEFAULT)
10 pr in t m

nf = t e s l a . NormalForm ( )
n f . n o rma l i z e (m, 4 )
pr in t nf . A0 ( )
pr in t nf . A1 ( )
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APPENDIX
A lattice input for TESLA is like the following. The

format is close to MAD-8 [8] but in a former grammar.

MKBPM: Marker ;
QH1G2C30A : Quadrupole , L= 0 . 275 , K1= −0 .633 ;
SQHHG2C30A: Quadrupole , L= 0 . 1 ;
QH2G2C30A : Quadrupole , L= 0 . 448 , K1= 1 . 4 7 7 ;

5 . . .
B1G5C01B : Dipole , L= 2 . 6 2 , ANGLE= 0 .1047198 ,

E1= 0 .05236 , E2= 0 . 0 5236 ;
DH02G1A: D r i f t , L= 4 . 2 9379 ;
. . .

10 CELL : LINE=(DH02G1A, . . . , DH01G1A ) ;
RING : LINE=(MK0, 15∗CELL ) ;
s e t up , l i n e ="RING" , s h a r e d = f a l s e ;
#
upda te , name="B.*" , t y p e ="Dipole" ,

15 p r o p e r t y ="SLICE" , v a l u e =15;
upda te , name="Q[LHM].*" , t y p e ="Quad.*" ,

p r o p e r t y ="SLICE" , v a l u e =10;
upda te , name="S[LHM].*" , t y p e ="Sext.*" ,

p r o p e r t y ="SLICE" , v a l u e =5;
20

s a v e _ l a t t i c e , h5group="ring_lat" ;
b a s i c , h5group = "basic" ;

f requency_map , n t u r n =256 ,
25 x =( −0 .025 , 0 . 025 , 150 ) ,

dp =( −0 .03 , 0 . 0 3 , 120 ) , y=1e−5 , ppn =20 ,
n a f f _ i t e r =30 , h5group="fma_xdp" ;
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