
PARALLEL OPTIMIZATION OF ACCELERATOR TOOLBOX
BY OpenMP AND MPI*

K. Wang#, C.M. Luo, S.Q. Tian, M.Z. Zhang, Q.L. Zhang, B.C. Jiang
SINAP, Shanghai, China

Abstract
Parallel computing adopted in the simulation program

of accelerators improves the computational efficiency,
especially tracking with multi-particle and multi-turn
which always takes a lot of time. Through investigating
the operational principle and running flow of Accelerator
Toolbox(AT) embeded in Matlab for accelerator design
and simulation, Open Multi-Processing (OpenMP) and
Message Passing Interface (MPI) were studied on and
adopted in the parallel computing. The key code of parti-
cle tracking in AT has been transplanted and test with
OpenMP-MPI as well as estimated reasonably, which
improve the calculation efficiency largely. It is indicated
that OpenMP-MPI hybrid parallel structure is in good
agreement with AT programs by avoiding the internal
communication and improving load balance. A multi-core
computing platform based on OpenMP-MPI has been
developed and contributed to the deep optimization of
accelerators. And it shows good extensibility, which could
speed up by adding computing nodes.

INTRODUCTION
Accelerator Toolbox(AT), developed by Stanford Syn-

chrotron Radiation Light source (SSRL), is a toolbox em-
bedded in Matlab for accelerator design and simula-
tion [1]. The experiment measurements agreed well with
AT has been carried out using a plenty of functions and
applications assisted by Matlab. In recently years, AT has
been used for the design and operation at Shanghai Syn-
chrotron Radiation Facility (SSRF), which is one of the
advanced 3rd light sources worldwide [2, 3]. In order to
calculate the dynamic aperture and optimize the lattice
design of synchrotrons, computation-intensive algorithms
are required. Based on the progress of the programme, we
can improve the computational efficiency largely. Be-
cause of the abundant repeated calls of particle tracking
functions used in AT, the computing speed will be post-
poned without parallel computing. It is expected that we
propose the parallel optimization of AT [4].

The two common methods for parallel optimization are
as follows. One is based on using GPU. The other one is
using multi-core CPU with multi-thread. Due to the fre-
quently data exchange between computer memory and
GPU in particle tracking assisted by cache operations, the
speed-up efficiency cannot be effective obviously with a
few data such as a small number of particles. As a result,
it is verified that parallel optimization with multi-core
CPU is a better choice.

OpenMP is a standard model of share memory compu-
ting, which supports C/C++ compiler. With a local qual-
core computer, the speed-up can be almost 4 times. Based
on the message passing model, MPI is used for a dual
CPU server to speed up further. And it shows good exten-
sibility that the speed grows linearly along with the num-
ber of computing nodes.

EXPERIMENTAL

Accelerator Physics and Optimization Analysis
Considering that a particle can be represented in AT

with a point in 6-dimension phase space, particles
transport from one accelerator element to the next can be
computed by a second-order transport matrix. It is as-
sumed that the particles are relativistic and there are no
interaction with each other, which obtain the parallel
computing request [5]. With particle tracking assisted by
different passmethod functions, AT can calculate the par-
ticles trajectories by ringpass function. The passmethod
functions have million calls in particle tracking process
and the calculation of multi-particle with multi-turn
through accelerator elements is called as Single Instruc-
tion Multiple Data (SIMD) operation, which has a good
agreement with OpenMP and MPI processing [6]. Parallel
computing can work simultaneously for the different part
of the same programme by the use of multiple computing
resources, which increase the computing speed efficient-
ly [7]. However, it is expected that the parallel computing
is compatible with OpenMP and MPI.

OpenMP is an Application Programming Interface
(API) for multi-thread programming with C/C++ and
FORTRAN, which offers a highly abstract description for
parallel computing. OpenMP includes compiler direc-
tives, library routines and environment variables which
affect the run-time behavior [8]. Using OpenMP routines
and directives for the existing AT source code, AT adopts
the Uniform Memory Access (UMA) model which all the
cores of processors share the same physical memory uni-
formly. With the moderate changes to the passmethod
functions written in C, OpenMP can be carried out by
Matlab MEX compiling function [9].

MPI is a standard of distribution model adopted in the
control of parallel computing by explicit ways. Matlab
MPI is a Matlab implementation of the MPI standard,
which allows any Matlab program to exploit the multiple
processors [10]. It is called NUMA architecture model
built with OpenMP and MPI that multi machines run in-
dependently with local memory and communicate each
other with Bus Interconnect. Figure 1 shows the NUMA
model schematic diagram.

*Work supported by National Natural Science Foundation of China
under Grant No. 11105214

wangkun2013@ sinap.ac.cn

WEP35 Proceedings of ICAP2015, Shanghai, China

ISBN 978-3-95450-136-6

118C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

F-1 Parallel Computing and Emerging Technologies

Figure 1: The NUMA schematic diagram.

Here we use a general distributed memory model. The

upper computers use Matlab MPI for controlling the par-
allel computing and communication. And the lower com-
puters use OpenMP for compute. The data is distributed
to the lower computers with message-passing functions.
And then the computing results from the lower computers
can be transferred to the upper computers. Finally, they
are combined into the final result. The local task distribu-
tion for every CPU can be managed by the shared
memory computing interface, so that a global distributed
memory model is adopted in AT. Through the way, the
data conflict caused by two processors access to the same
memory can be avoided. Only with UMA model, the CPU
spin time will be raised up. And sometimes the data con-
flict delay takes two-processor working time longer than
that one-processor.

Parallel AT with OpenMP and MPI

OpenMP and MPI are used to the parallel computing of
the passmethod functions, which can increase the increase
the speed mentioned above. To find sections of the codes
processed simultaneously, OpenMP and MPI program can
be created with existing code. The changings and the
compilation of the codes are in the appendix. Library
functions omp_get_num_threads() and
omp_get_thread_num() can be used for the parallel part of
the function to obtain the number of threads and the id of
the working thread numbered from zero. The start_index
is the offset of each computing core. Based on the thread
id number, different thread works on different data.,
which realize the paralleling of data and tasks.

For instance, the DriftPass.c [2] can be used to calcu-
late the particle tracking through a drift element. Intel
VTune Amplifier [11] is adopted to test the efficiency of
the parallel DriftPass.c. The test number of the particles is
3920, with 500000 loops on a qual-core computer. The
result is shown in Fig. 2 and Table 1.

Figure 2: Compute times for parallel and non-parallel
DriftPass.

As seen in Fig. 2, the CPU have a large free time during

the non-parallel compute because only one core is used
for compute, others are free. The parallel compute has
some extra time for multi-thread open and so on.

Table 1: Compute Times for Parallel and Non-parallel
DriftPass

Elapsed time/s CPU time/s

Overhead &
Spin time/s

Parallel 10.28 77.83 7.22

non-
parallel

30.09 30.05 0.00

CPU time is the sum time for all threads; Overhead &

Spin Time is the time which an active thread takes to get a
synchronization construct. They take over the most CPU
time. Overhead & Spin Time takes about 9.3% of all CPU
time. So the speedup of the parallel program is 2.98. And
it is not reach the limit value 4. All the passmethod func-
tions called in ringpass can be parallelized by OpenMP,
so that ringpass is a parallel program.

RESULTS AND DISCUSSION
Frequency map analysis (FMA) is an analysis method

for a dynamic aperture to find the amplitude of frequency
shifts. The FMA works as follows: (1) the program flow
carry out particle tracking, (2) then through N turns and
gets the particles output data, (3) finally uses a first-order
Hamming filter and filter the data [12]. It is a frequency
scanning tool which is used to reveal information about
nonlinear resonances and guide frequency optimiza-
tion [13]. It is takes lots of time that particle tracking
computing. As a result, OpenMP is used to save time and
improve the efficiency. Figure 3 shows the result that the
time costs when using parallel and non-parallel methods

Proceedings of ICAP2015, Shanghai, China WEP35

F-1 Parallel Computing and Emerging Technologies

ISBN 978-3-95450-136-6

119 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

to compute FMA with different number of particles. An
Intel i7-3770 CPU was used with 4G RAM.

Figure 3: FMA execution time for non-parallel and paral-
lel computing using different numbers of particles.

The number of particles is shown on the x axis and the

execution time on the y axis. It is indicated that the time
grows almost linearly with the number of particles. The
time of non-parallel method takes up to 3.16 times as long
as that of the parallel method, so that the speed using par-
allel computing is at most 3.16 times the speed using non-
parallel computing. Based on Amdahl’s law [14]:

 parpar fPf 


1

1
S , (1)

where fpar is the parallel fraction of the program. P is the
speedup of the parallel part and S is the speedup of all
programs. The formula is used to calculate the times for
the parallel and non-parallel parts of the program flow.
The parallel part of the program is the ringpass function
and the main non-parallel part is the FMA function. The
results for the parallel and non-parallel programs is shown
in Table 2 and Table 3, where N is the number of parti-
cles, Tf is the time taken by the FMA function and Tall is
the time of all program.

Table 2: Time Profile Using Parallel Computing

N Tf /s Tall/s Tf/Tall/s

512 1.19 5.87 0.202

1128 2.66 12.58 0.207

2450 5.75 28.04 0.205

4418 10.18 51.28 0.206

9800 22.47 109.74 0.207

177578 50.57 191.24 0.212

Table 3: Time Profile Using Non-parallel Computing

N Tf /s Tall/s Tf/Tall/s

512 1.25 17.52 0.071

1128 2.82 39.11 0.072

2450 6.16 85.92 0.071

4418 11.01 152.52 0.072

9800 24.40 339.43 0.072

177578 43.50 604.51 0.072

As listed in Tables 2 and Table 3, the value Tf/Tall is

almost constant for both types of computing. From Eq.
(1), the speedup of the parallel part can be calculated as
follow:

07.0P）07.0-1（

1
3.16


 . (2)

From Eq. (2), 0.07 is the non-parallel part of the com-
puting process and the value of P is about 3.77. Along
with the number of particles increasing, P will be close to
4, but not never equal to 4 because of the quad-core CPU
with 4 threads. And the synchronization between threads
of different cores reduces the compute speed.

A Dell R720 server platform has been developed to use
the speedup raised by OpenMP and MPI. R720 has 2 pro-
cessors with 16 CPU cores each, which can be regard as
two compute nodes during the computing process. The
speedup of one node is 6.23. And the speedup of 2 nodes
is 12.18, which is almost double of one node. It is obvious
that because the computing process is independent each
other, the communication costs about 2.3% of the total
time. The speedup of the computing process can grow
linearly with the number of CPU using OpenMP and MPI,
which shows good extensibility.

CONCLUSION
This paper describes parallel and non-parallel results

with use of OpenMP and MPI, which the parallel optimi-
zation of AT improves the computational efficiency.
OpenMP and MPI can be carried out to the similar way
for other accelerator physics programs if the program
parallelized. A multi-core computing platform has been
developed and contributed to the deep optimization of
accelerators, which is convenient to speed up by adding
computing nodes.

APPENDIX

#include<omp.h>

…… some computation and initialization

Omp_set_num_threads(4)
#pragma omp parallel private(i) share(start_index,n)
{
thread_id=omp_get_thread_num();
num_threads=omp_get_num_threads();
start= start_index + n*thread_id /num_ threads;
if(thread_id==num_threads-1)
end=n-1;
else
end=n*(thread_num+1)/ num_threads-1;
for(i=start;i<=end;i++){

…computation

}
}

WEP35 Proceedings of ICAP2015, Shanghai, China

ISBN 978-3-95450-136-6

120C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

F-1 Parallel Computing and Emerging Technologies

REFERENCES
[1] Terebilo. A, “SLAC-PUB-8732”, 2001.
[2] S.Q. Tian et al., Nuc. Sci. Tech. 25 (2014): 10102-010102
[3] B.C. Jiang et al., HIGH ENERGY PHYSICS AND NU-

CLEAR PHYSICS. 31(2007):956-961.
[4] X.Y. Yan et al., Journal of South China University of Tech-

nology (Natural Science Edition), 40(2012):71-78.
DOI:10.3969/j.issn.1000-565X.2012.04.011.

[5] H. Grote et al., “The MAD Program (Methodical Accelera-
tor Design) Version 8.13/8 User’s Reference Manual”, Ge-
neva, Switzerland. January, 1994, 18.

[6] M.D. Salt et al., “Beam Dynamics using Graphical Pro-
cessing Units”, 2008.

[7] G. L. Chen et al., Chinese Science Bulletin. 54(2009):
1845-1853.

[8] L. Dagum et al., Computational Science & Engineering,
IEEE. 5(1998): 46-55.

[9] Y. Zhang, Optimization Methods and Software. 10(1998):
1-31.

[10] J. Kepner et al., arXiv preprint astro-ph/0107406, 2001.
[11] Marowka.Ami, “On Performance Analysis of a Multi-

threaded Application Parallelized by DiKerent Program-
ming Models Using Intel Vtune Parallel Computing Tech-
nologies”, 2011:317-331.

[12] J. Laskar, “Frequency map analysis and particle accelera-
tors”, Particle Accelerator Conference, Portland. 2003: 12-
16.

[13] S.Q. TIAN et al., Chinese Physics C. 533(2009): 224
[14] Chandra, “Parallel programming in OpenMP”, Morgan

Kaufmann, 3(2001):16-17.

Proceedings of ICAP2015, Shanghai, China WEP35

F-1 Parallel Computing and Emerging Technologies

ISBN 978-3-95450-136-6

121 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

