2011 by IPAC'11/EPS-AG — cc Creative Commons Attribution 3.0 (CC BY 3.0)

EMITTANCE COMPENSATION SCHEME FOR THE BERLINPRO INJECTOR*

A.V. Bondarenko[#], A.N. Matveenko, HZB, Berlin, Germany.

Abstract

Following funding approval late 2010, Helmholtz-Zentrum Berlin officially started Jan. 2011 the design and construction of the Berlin Energy Recovery Linac Project BERLinPro. The initial goal of this compact ERL is to develop the ERL accelerator physics and technology required to accelerate a high-current (100 mA) low emittance beam (1 mm-mrad normalized), as required for future ERL-based synchrotron light sources. Given the flexibility ERLs provides, a short bunch operation mode will also be investigated.

The space charge is the main reason of emittance degradation in injector due to rather low injection energy (7 MeV). The implementation of emittance compensation scheme in the injector is necessary to achieve such low emittance. Since injector's optics is axially non-symmetric, the 2D-emittance compensation scheme [1] is proposed to be used. Other sources of emittance growth are also discussed.

THEORY

The gun produces a beam with a low transverse emittance. The main request to the injector design is to keep the emittance low and allow bunching of the beam. The main source of emittance grows in the injector is transversal and longitudinal space charge forces and aberrations.

Transversal Space Charge

Consider effects of transversal space charge. In injector we have a space charge dominated beam [2]. If the longitudinal size in the beam frame is larger than the transversal one, we can divide the bunch into slices, neglect interaction between them and consider the motion of slices independently from each other [3].

The slices start at the cathode with the same radii and different current densities. Therefore, the motion of the slices in the phase space is different from each other. It leads to an increase of the phase space area filled by particles. As a result the emittance grows. The emittance compensation technique allows to align slices again at some points of the trajectory. At these points emittance will be minimal.

In an axi-symmetrical system a solenoid is used to make "emittance compensation" at a certain point, usually in the booster. Estimations show, however, that the beam in the merger of the BERLinPro is still space charge dominated; therefore, it is necessary to have emittance compensation point in the main linac. For a system without axial symmetry the 2D-emittance compensation

02 Synchrotron Light Sources and FELs

technique should be used to make both x- and y-emittances minimal at the middle of the linac [1].

To calculate and optimize beam parameters in this approximation the special code was developed. The code solves the system of equations (1) for each slice numerically and optimizes emittance and beam size at the end of the injector.

$$\frac{\partial^{2} x}{\partial s^{2}} = -k_{x}x + \frac{j}{x+y}, \quad \frac{\partial^{2} y}{\partial s^{2}} = -k_{y}y + \frac{j}{x+y},$$

$$j = \frac{I_{in}}{\beta_{in}I_{0}\beta^{2}\gamma^{3}} \cdot n,$$

$$\frac{\partial n}{\partial s} = -n \cdot \delta'(\frac{1}{\beta^{3}\gamma^{2}} - \frac{D}{R}),$$

$$\frac{\partial \delta'}{\partial s} = \frac{\varepsilon'(ct)}{E_{0}} - \delta'\frac{\varepsilon(ct)}{E_{0}} - \delta'^{2}(\frac{1}{\beta^{3}\gamma^{2}} - \frac{D}{R}),$$

$$\frac{\partial ct}{\partial s} = \frac{\delta E}{E_{0}}(\frac{1}{\beta^{3}\gamma^{2}} - \frac{D}{R}), \quad \frac{\partial \delta E}{\partial s} = \varepsilon(ct) - \varepsilon(0),$$
(1)

where x, y – rms sizes, δE – energy deviation, ct – longitudinal coordinate of slices, δ' – s-derivative of the energy spread, n – bunching level, I_{in} – initial current, $\varepsilon(ct)$ – cavity acceleration gradient, R – trajectory radius, $k_{x,y}$ – focusing strengths, D – dispersion, E_0 – beam energy.

Longitudinal Space Charge

In our case the longitudinal beam size in the beam's frame is much more than the transversal one. The longitudinal electrical field in the accelerator's frame can be estimate as:

$$E_z \approx \frac{Q}{\gamma 2\pi\varepsilon_0 rl}$$
 , (2)

where Q is the bunch charge, r – transversal radius, l – bunch length, γ – relativistic factor, ε_0 – permeability of vacuum. In the merger γ is about 14, r is about 2 mm and l is about 10 mm, due to this longitudinal electrical field is about a few keV/m.

The main impact of the longitudinal electrical space charge field on the beam dynamics is changing of the particles energy. The energy change δ_{sc} in the dispersion section can be the main reason of the emittance growth in the merger.

$$\delta_{sc} \approx \frac{E_z \cdot L}{E_0},$$
 (3)

where L is the length of a dispersion section. The particle offset at the end of a merger δx is about:

$$\delta x \approx \delta_{sc} \cdot D \,, \tag{4}$$

where D is the value of the dispersion in the merger. The offset of a slice centre at the end of the merger can be partly compensated by adjusting the dispersion at the end

1497

^{*}Work supported by grants of Helmholtz Association VH-NG-636 and HRJRG-214.

[#]alexey.bondarenko@helmholtz-berlin.de

of the merger, if there is a correlated energy spread in the bunch (in this case the merger is not exactly achromatic).

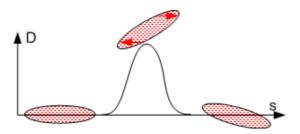


Figure 1: Transverse emittance grows due to longitudinal space charge in dispersion section.

This particle offset at the end of a merger leads to transversal emittance degradation in the dispersion section. The estimation of this effect is following:

$$\frac{\Delta \varepsilon}{\varepsilon} \approx \frac{\delta x}{x_{rms}} \approx \frac{\delta_{sc} \cdot D}{x_{rms}} \approx \frac{E_z}{E_0 x_{rms}} LD , \qquad (5)$$

where x_{rms} is the transversal bunch size. For dispersion section with 2 m length and value of dispersion 0.5 m emittance growth twice. Therefore emittance degradation due to this effect can be relatively strong and a merger design with the shortest dispersion section seems to be the only way to avoid this effect.

Aberrations

In the injector we have following aberrations: in the solenoid, chromatic aberrations and RF nonlinearity.

First, we estimate aberrations in a solenoid. The equation of motion in a solenoid to 3rd order terms is the following

$$r'' = -Kr + (K\frac{B''}{2B} - K^2)r^3 + Kr^2r'\frac{B'}{B} - Krr'^2,$$

$$K = \frac{e^2B^2}{4n^2c^2}.$$
(6)

In an approximation of a thin solenoid the angle which particles get is given by integration. The strongest of nonlinear terms is $\sim r^3$ and emittance growth due to it is:

$$\Delta \varepsilon \approx r_{rms}^4 \int \left(\frac{e^2 B B''}{8 p^2 c^2} - \left(\frac{eB}{2 pc} \right)^4 \right) ds.$$
 (7)

If one increases the solenoid length keeping the strength constant, aberrations decrease. For our beam parameters, the emittance growth in solenoids with a magnetic length of 0.15 m is 0.2 mm·mrad. It seems to be acceptable and technically feasible.

Next, estimation of the emittance growth due to chromatic aberrations is given.

$$\frac{\Delta \varepsilon}{\varepsilon} \approx \frac{\langle \delta x_2 \rangle}{x_{rms}} \approx \frac{\eta_2 \delta_{rms}^2}{x_{rms}},\tag{8}$$

where δx_2 is particle offset due to the chromatic aberration, x_{rms} is transversal rms beam size, η_2 is the second order dispersion.

In the merger we have $\eta_2 \approx 0.5 \text{ m}^{-2}$ and $x_{rms} \approx 0.6 \text{ mm}$. The acceptable relative emittance growth due to the chromatic

aberration is 0.1, and rms energy spread in this case should be below 10^{-2} .

Further, the impact of the RF curvature is discussed.

The main impact of the RF nonlinearity on the beam dynamics is a possibility of an overbunching. Firstly, the slice motion in this case is not independent, and we can not use emittance compensation techniques. Second, it leads to a significant increase of current in overbunching slices. As a result, their motion becomes totally different from the rest of the beam and the emittance increases dramatically.

To find the condition of overbunching, consider the longitudinal motion of two particles (1st and 2nd) in the bunch. For our estimation we assume that:

$$E(ct) \approx \widetilde{E} \cos(ct \frac{2\pi}{\lambda} + \varphi_0),$$
 (9)

where E(ct) is the energy distribution in a bunch after the booster.

$$c\Delta t' = c\Delta t + R_{56} \frac{E(ct_2) - E(ct_1)}{E(0)},$$

$$c\Delta t' = c\Delta t + R_{56} \frac{\cos(ct_2 \frac{2\pi}{\lambda} + \varphi_0) - \cos(ct_1 \frac{2\pi}{\lambda} + \varphi_0)}{\cos(\varphi_0)},$$
(10)

where $c\Delta t$ and $c\Delta t'$ are distances between the particles before and after the merger, φ_0 is the phase of the reference particle.

To estimate the local bunching n_l consider the case when 1^{st} and 2^{nd} particles are sufficiently close.

$$c\Delta t' = c\Delta t - R_{56}c\Delta t \frac{2\pi}{\lambda} (\sin(\Delta \varphi) + \cos(\Delta \varphi) t g(\varphi_0)),$$

$$\Delta \varphi = c(t_1 + t_2) \cdot \frac{\pi}{\lambda},$$

$$n_l = \left(1 - \frac{R_{56}}{\cos(\varphi_0)} \frac{2\pi}{\lambda} \sin(\varphi_0 + \Delta \varphi)\right)^{-1}.$$
(11)

If $n_l = \infty$ the overbunching is happened, the phase of the overbunching slice is $\Delta \varphi_{ovb}$.

Taking stree is
$$\Delta \varphi_{ovb}$$
.

$$1 = \frac{R_{56}}{\cos(\varphi_0)} \frac{2\pi}{\lambda} \sin(\varphi_0 + \Delta \varphi_{ovb}),$$

$$\Delta \varphi_{ovb} = \arcsin\left(\frac{\cos(\varphi_0)}{R_{56}} \frac{\lambda}{2\pi}\right) - \varphi_0,$$
(12)

To estimate the global bunching factor n_g consider 1^{st} particle in the beginning and 2^{nd} in the end of the bunch.

$$ct_{1} 2\pi/\lambda = -ct_{2} 2\pi/\lambda = \Delta \psi,$$

$$c\Delta t' = c\Delta t - R_{56} 2\sin(\Delta \psi)tg(\varphi_{0}),$$

$$n_{g} = \left(1 - R_{56} \frac{2\pi}{\lambda} \frac{\sin(\Delta \psi)}{\Delta \psi} tg(\varphi_{0})\right)^{-1}.$$
(13)

To estimate the maximum possible bunching without overbunching n_g^* consider $\Delta \varphi_{ovb} = \Delta \psi$. For a short bunch $\Delta \psi <<1$, and small phase $\varphi_0 <<1$, we can put (12) into (13) and simplify.

$$n_g^* \approx \left(1 - R_{56} \frac{2\pi}{\lambda} \left(\arcsin\left(\frac{\lambda}{2\pi R_{56}}\right) - \Delta \psi\right)\right)^{-1} \approx \frac{\lambda}{2\pi R_{56} \Delta \psi}.$$
 (14)

02 Synchrotron Light Sources and FELs A16 Energy Recovery Linacs (ERLs)

$$\delta = 2\sin(\Delta\psi) \cdot tg\varphi,$$

$$\delta_{rms} \approx \frac{\delta}{\sqrt{12}} \approx \frac{\Delta \psi \cdot tg \, \varphi_0}{\sqrt{3}},$$
 (15)

$$\varphi_0 = arctg \left(\frac{\sqrt{3} \delta_{rms}}{\Delta \psi} \right) \approx arctg \left(\frac{\sqrt{3} \cdot 10^{-2}}{0.07} \right) \approx 15^0.$$

The maximal possible value of R_{56}^* at which overbunching does not happen is following.

$$R_{56}^* = \frac{\lambda \cos(\varphi_0)}{2\pi \sin(\varphi_0 + \Delta \psi)} = \frac{0.23m \cdot \cos(15^0)}{2\pi \sin(15^0 + 4^0)} \approx 0.11m. (16)$$

The bunching level in this case is:

$$n_g^* \approx \frac{\lambda}{2\pi R_{56}\Delta\varphi} \approx \frac{0.23m}{2\pi \cdot 0.11m \cdot 0.07} \approx 5$$
. (17)

SIMULATION

We start ASTRA simulations with a particle distribution at the cathode. The beam is modeled with the uniform distribution in the transversal plane with radius 0.8 mm. This means the laser spot is with hard edges. Longitudinal distribution is defined by the form of the laser pulse and cathode response time. In the model we assume 15 ps flattop laser pulse with 2 ps rise and decay time.

The phase of the gun cavity is adjusted to achieve small longitudinal decompression (15°). The phase influences the transversal focusing in the RF field and correlated energy spread after the gun. In our case the transversal beam size after the gun is large and aberrations in the solenoid give relatively large slice emittance which is hard to compensate further, therefore, low aberration solenoid design is necessary.

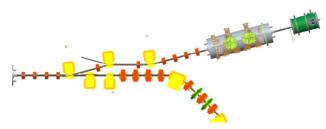


Figure 2: Draft of injector.

The dogleg merger (fig 2.) was chosen because it is the simplest variant with necessary parameters. It has $R_{56} \approx 11$ cm. As described in previous sections, this simplifies bunch compression. Phases in the booster cavities are set approximately 20° off crest to achieve necessary energy chirp.

The bunch starts with 1 mm rms length after the gun and expands to 1.7 mm at the beginning of the booster due to positive correlated energy spread (energy at the head is higher) and a time-of-flight debunching in a free space. The acceleration in the booster reverses the sign of

the correlated energy spread and the bunch is compressed slightly in the drift. The main compression is in the second dipole of the dogleg, but the bunch length decreases further up to the linac. Final rms bunch length is set in this case to ≈ 0.55 mm. A higher compression demands the peak current of over 20 A, which is too high for a 7 MeV bunch.

The strengths of 4 quadrupoles between the booster and the merger and 4 quadrupoles between the merger and the linac are optimized by the special code to provide 2D-emittance compensation and minimize β -functions at the end of the linac (fig. 3).

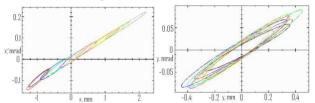


Figure 3: Slices transversal phase spaces after the linac with achromatic merger.

Two quadrupoles inside the merger are adjusted to compensate the linear part of the particle offset due to the longitudinal space charge (fig. 4).

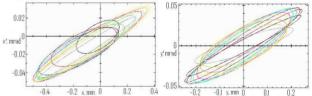


Figure 4: Slices transversal phase spaces after the linac with adjusted dispersion at the end of the merger.

In this regime all linear space charge affects on transversal emittance are compensated.

Table 1: Beam Parameters From the Injector

Beam energy	7 MeV
Max average beam current	100 mA
Bunch charge	77 pC
Longitudinal emittance	5 keV·mm
Bunch rms length	2 ps
Transversal normalized emittances, $\varepsilon_x/\varepsilon_y$	1/0.7 mm·mrad
Beam transversal output rms size	1 mm

REFERENCES

- [1] S.V. Miginsky. Emittance compensation of elliptical beam. NIM A 603 (2009), pp 32-34.
- [2] S.V. Miginsky. Space charge effects, coherence of charge oscillation, and emittance. Technical Physics, 2008. Vol. 78, №9, pp. 96-106.
- [3] S.V. Miginsky. Scope of the locally cold beam model. NIM A 603 (2009), pp 28-31.