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Abstract

When creating an initial model of an accelerator, one
usually has to resort to a hard edge model for the
quadrupoles and higher order multipoles at the start of the
project. Ordinarily, it is not until much later on that one
has a field map for the given multipoles. This can be rather
inconvenient when one is dealing with particularly thin el-
ements or elements which are rather close together in a
beamline as the hard edge model may be inadequate for
the level of precision desired. For example, in the EMMA
project, the two types of quadrupoles used are so close to-
gether that they are usually described by a single field map
or via hard edge models. The first method has the desired
accuracy but was not available at the start of the project
and the second is known to be a rough approximation. In
this paper, an analytic expression is derived and presented
for fringe fields for a multipole of any order with a view to
applying it to cases like EMMA.

FRINGE FIELDS FOR DIPOLES

In order to have fringe fields, given by a
→
B which satisfy

Maxwell’s equations, it is important to write all equations
down explicitly. For Dipoles, it is sufficient to consider a
two dimensional version of the equations

→
∇ × →

B =
→
∇ · →

B = 0.

Now, if we take Bx = 0, we are left with

∂yBy + ∂zBz = ∂yBz − ∂zBy = 0 (1)

together with
∂xBz = ∂xBy = 0 (2)

which excludes all dependence on x. Further, we seek
fringe fields which have a possible fall-off on axis given
by the six parameter Enge function [1]

F (z) =
1

1 + exp [E(z)]

with E(z) given by

E(z) = a1 + a2

( z

D

)
+ a3

( z

D

)2

+ ... + a6

( z

D

)5

and all ai constants determined by models and/or exper-
iment, or any function which decays sufficiently rapidly.
Maxwell’s equations (1) imply

Δy,zBy = Δy,zBz = 0

where Δy,z = ∂2
y + ∂2

z . Both wave equations (for By and
Bz) can be easily solved to give

By = e(z + iy)+f(z− iy), Bz = g(z + iy)+h(z− iy).

Hence, if we ask that equations (1) be solved as well, we
end up with

By = e(z+iy)+f(z−iy), Bz = −ie(z+iy)+if(z−iy)

If we further restrict ourselves to real magnetic fields, we
obtain

By = e(z + iy) + ē(z − iy) (3)

Bz = −ie(z + iy) + iē(z − iy) (4)

so By and Bz are given by twice the real and imaginary
parts of the function e(z + iy) respectively. A possibility
for having a magnetic field whose By component fall off
on axis is given by the six parameter Enge function [1] as

By =
1

2(1 + eE(z+iy))
+

1
2(1 + eE(z−iy))

(5)

which would force Bz to have the form

Bz =
−i

2(1 + eE(z+iy))
+

i

2(1 + eE(z−iy))
(6)

for some complex function E(z + iy). If we consider the
simple case E(z + iy) = z + iy then equations (5) and (6)
simplify to

By =
(1 + ez cos(y))

1 + 2ez cos(y) + e2z
, Bz =

−ez sin(y)
1 + 2ez cos(y) + e2z

.

This may be extended to include as many parameters of
the Enge function as desired, the only restriction being that
E = E(z + iy).

EXTENSION TO HIGHER ORDER
MULTIPOLES

In order to extend the fringe fields to higher order multi-
poles, it is instructive to rewrite a few of the already known
higher order multipoles in a way which can be seen to ex-
plicitly solve Maxwell’s equations - that is to express them
in the form ((3),(4)) - only, this time coordinates x and y are
used rather than y and z. This is done by introducing the
complex coordinates u = 1√

2
(x + iy) and v = 1√

2
(x− iy)

and by defining the transformation / rescaling of Maxwell’s
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equations: Bu = 1√
2
(Bx+iBy), Bv = 1√

2
(Bx−iBy) and

B
′
z = 1√

2
Bz , z

′
= 1√

2
z and dropping primes, we have:

∂uBu + ∂zBz = 0 (7)

∂vBv + ∂zBz = 0 (8)

∂zBu − ∂vBz = 0 (9)

∂zBv − ∂uBz = 0 (10)

From (7) and (8), one can see immediately that, in the ab-
sence of any fringe fields, the general solution of Maxwell’s
equations for any magnet, acting transversely only and
without fringe (Bz = 0) is given by Bu = f(v) and
Bv = h(u) for some functions f and h. The case of an
n-pole multipole is given by Bu = iv

n−2
2 , Bv = −iu

n−2
2

and Bz = 0, so a quadrupole is Bu = iv, Bv = −iu and
Bz = 0.

The main point is that, for dipole fringe fields, one needs
to go from a magnetic field which is one dimensional to one
that is two dimensional whereas for multipoles one has to
go from two dimensional field to a three dimensional one.
This presents the problem that the complete solution to the
three dimensional Laplace equation is not really known.
A formal solution due to Whittaker is known and may be
given by

ϕ(x, y, z) =
∫ 2π

0

f(z + ix cosϑ + iy sin ϑ)dϑ

where Δx,y,zϕ = ∂2
xϕ + ∂2

yϕ + ∂2
zϕ = 0. However,

it is extremely difficult to translate this into a real solu-
tion and the only well-known one is ϕ = (z + ix cosϑ +
iy sinϑ)−1 which gives the standard solution 2π/r with
r =

√
x2 + y2 + z2. Therefore, we try a different ap-

proach, and, rather than solving Laplace and then further
restricting the general solution by substituting it into the
Maxwell equations, we assume a general form the multi-
pole fringe fields should have and then we solve the result-
ing constraints. In full, the equations to be solved are ((7),
..., (10)) and we assume that the fringe fields have the fol-
lowing form

B̃u =
f1(u, v, z) + f2(u, v, z)ez

(1 + 2f3(u, v)ez + e2z)

B̃v =
f4(u, v, z) + f5(u, v, z)ez

(1 + 2f3(u, v)ez + e2z)

B̃z =
f6(u, v, z) + f7(u, v, z)ez

(1 + 2f3(u, v)ez + e2z)
.

This is based on a generalisation of the form the fringe
fields take for the dipole case. Essentially, there are only
two types of differentials that we have to look at and these
are

∂uBu =
∂uf1 + ∂uf2e

z

A
− 2(f1 + f2e

z)ez∂uf3

A2

∂zBu =
∂zf1 + ∂zf2e

z

A
− 2(f1 + f2e

z)(ezf3 + e2z)
A2

where A = 1+2f3e
z+e2z. For the remaining differentials,

we simply implement the following changes sequentially

∂vBu = ∂uBu (u ↔ v)

∂uBv = ∂uBu, (f1 → f4, f2 → f5)

∂vBv = ∂uBv (u ↔ v)

∂zBv = ∂zBu (f1 → f4, f2 → f5)

∂uBz = ∂uBu (f1 → f6, f2 → f7)

∂vBz = ∂uBz (u ↔ v)

∂zBz = ∂zBu (f1 → f6, f2 → f7).

As all equations ((7), ..., (10))are equal to zero, we take
out a factor of A2 and we can now equate all coefficients of
ez giving:

e3z : ∂uf2 + ∂zf7 − f7 = 0 (11)

∂vf5 + ∂zfz − f7 = 0 (12)

∂uf7 − ∂zf5 + f5 = 0 (13)

∂vf7 − ∂zf2 + f2 = 0 (14)

e2z : f2∂uf3 + f6 − f3f7 = 0 (15)

f5∂vf3 + f6 − f3f7 = 0 (16)

f7∂uf3 − f4 + f3f5 = 0 (17)

f7∂vf3 − f1 + f3f2 = 0 (18)

ez : f1∂uf3 + f3f6 − f7 = 0 (19)

f4∂vf3 + f3f6 − f7 = 0 (20)

f6∂uf3 + f5 − f3f4 = 0 (21)

f6∂vf3 + f2 − f3f1 = 0 (22)

e0 : ∂uf1 + ∂zf6 = 0 (23)

∂vf4 + ∂zf6 = 0 (24)

∂uf6 − ∂zf4 = 0 (25)

∂vf6 − ∂zf1 = 0. (26)

Note that we have not included all the steps and the
above equations represent the original set with all possi-
ble simplifications, taking into account the set itself. Note
that, equations ((11), ..., (14)) and ((23), ..., (26)) may be
solved independently of the rest and they can therefore be
dealt with later. From equation (18), using (15) and (19),
we see

f7(∂vf3∂uf3 + f2
3 − 1) = 0.

Had we looked at equations (17) and (21) instead, using
(16) and (20), we would have had

f6(∂vf3∂uf3 + f2
3 − 1) = 0

with the same result from equation (22). Now, f6 and f7

cannot both be zero as this would mean Bz = 0, therefore
we must have

∂vf3∂uf3 + f2
3 − 1 = 0
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whose general solution is given by f3 = sinh(u, v) with
h(u, v) = 1

b u + bv + c, and b and c constant. Substituting
this back into ((15), ..., (22)) gives the relations f 2 = b2f5

and f1 = b2f4 and the equations reduce to just two inde-
pendent ones which may be written as

1
b
f2 cosh + f6 − f7 sin h = 0 (27)

f6 cosh +
1
b
f2 − 1

b
f1 sin h = 0. (28)

Using f1 = b2f4 and equations (23) and (24) we see that
we require

b2∂uf4 = ∂vf4

which can be solved by the method of characteristics to
give f4 = f4(h, z). Using this with equations (25) and (26)
we see that f6 = f6(h, z). Similarly, f2 = b2f5 applied to
(11) and (12) and, subsequently (13) and (14) gives f 5 =
f5(h, z) and f7 = f7(h, z). This leaves six equations to be
satisfied from the original system ((11), ..., (26)), namely
(27) and (28) together with

∂uf2 + ∂zf7 − f7 = 0 (29)

∂vf7 − ∂zf2 + f2 = 0 (30)

∂uf1 + ∂zf6 = 0 (31)

∂vf6 − ∂zf1 = 0. (32)

After cross-differentiation, equations (31) and (32) give

∂2
uvf6 + ∂2

zf6 = 0

∂2
uvf1 + ∂2

zf1 = 0.

Now, we can re-express the partial derivatives in u and
v in terms of h only and the equations simplify to �f1 =
�f6 = 0 with � = ∂2

h + ∂2
z and we can introduce the co-

ordinates w = h+ iz, w̃ = h− iz. Note that this operation
is equivalent to complex conjugation in the z co-ordinate
only and the function h is untouched. Therefore we have
the solutions f1 = p1(w)+q1(w̃) and f6 = p6(w)+q6(w̃).
Substituting this back into (31) and (32), we see that the
solutions are further constrained to f1 = −ibp6 + ibq6 + k
from which we can get f4 via f4 = 1

b2 f1. Subsequently,
we can get f2 from (28) and hence f5 via f5 = 1

b2 f2 and
f7 from 27. The general result, in terms of p6 and q6 may
be summarised as follows (with h = 1

b u + bv + c):

f1 = −ibp6 + ibq6 + k (33)

f2 = (−ibp6 + ibq6 + k) sin h − (bp6 + bq6) cosh (34)

f3 = sinh (35)

f4 =
1
b
(−ip6 + iq6 +

k

b
) (36)

f5 =
1
b
(−ip6 + iq6 +

k

b
) sinh − 1

b
(p6 + q6) cosh (37)

f6 = p6 + q6 (38)

f7 = (p6 + q6) sin h + (−ip6 + iq6 +
k

b
) cosh. (39)

So we are left with equations (29) and (30) to be solved.
Upon substitution of ((33), ..., (39)), this is actually seen
to be trivially satisfied with no further constraints on any
of the f ’s. In fact, the results can be seen to imply the
following solution to Maxwell’s equations:

Bu = −ibf(h + iz) + ibg((h− iz) (40)

Bv = − i

b
f(h + iz) +

i

b
g(h − iz) (41)

Bz = f(h + iz) + g(h − iz) (42)

with h being the same as defined earlier. Note that, the re-
lations f2 = b2f5 and f1 = b2f4 found earlier imply that
Bu ∝ Bv which means that no physical magnetic fields can
be represented this way. However, because of the linearity
of Maxwell’s equations, it is possible to add, together with
multiplicative constants, as many of these solutions as re-
quired. When we do this, we must also make sure that the
field decays as z → ∞ and that the field is equivalent to
the hard edge model when we are inside the magnet. The
full details of the result will be published elsewhere [3] and
we only go through the quadrupole case below. Let B z be
given by

Bz =
∑

j=1,2

cj [(hj +iz)Fj(hj +iz)+(hj−iz)Gj(hj−iz)]

with similar expresssion for Bu and Bv, according to the
format (40), (41) and (42) and where h j = 1

bj
u + bjv. The

functions Fi and Gi are chosen to give the desired decays.
Therefore, inside the magnet, we are left with the following
constraints on the bi’s and ci’s:

b1 = ± 1
b2

, c1 = −c2 =
1

2(b2
2 − 1

b22
)
.

The results are extendible to higher order multipoles in
a straightforward way, however, the higher the order, the
more three dimensional solutions discussed above need to
be included.

CONCLUSIONS

A closed form analytic expression was presented for
multipole fringe fields extendible to any order. The com-
plete derivation and details will be made given in [3]. It
is hoped that the results summarised in this paper will be
facilitate the design of machines like ns-FFAGs to a higher
degree of accuracy at an early stage in a given project.
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